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Abstract

The purpose of this paper is to evaluate the cost of a disability insurance contract over an arbitrary
period [0,T], thanks to a microeconomic approach inserted in the flexible and unifying framework of a Multi-
State model. The key idea is that a large, complex group may be summarized by an appropriate single
individual. As a matter of fact, in the context of group insurance, burdensome actuarial calculations and as
a result risk assessment may be drastically streamlined by adopting a representative insured assumption.
An algorithm for simulating events occurring during the period [0, T ], i.e. a sequence of periods of
activity and disability, potentially interrupted by the occurrence of the representative insured’s death, is
there constructed. This approach allows us, using a limit distribution argument, to express at t = 0 the
theoretical value of a constant annual premium consistent with solvency constraints for the time horizon
and the representative insured considered. More generally, this model can be used to price and reserve any
group insurance contract for a wide range of policy conditions set by the insurer. Using a scenario-based
approach, we can straightforwardly project future technical accounts determined by the specified solvency
constraints and risk horizon, thus providing stress tests required for a sound risk management.



2 MODELING

1 Introduction

We build in this paper a three-state model, ’active’, ’disabled1’ and ’dead’, on the basis of estimated instantaneaous
transition rates depending on the representative agent selected2. A Poisson Model has been chosen to estimate and
graduate the "active → disabled" transition rates, and a Cox Model has been implemented for the recovery, i.e. the
"disabled → active" transition. French Data which have been used to estimate these models are Marsh & McLennan
Companies property. Explanatory variables which have been selected to predict the transition rates are: age, gender,
area of work (Large cities, Medium sized cities, Small sized cities & rural areas), and the sector of activity. Concerning
the transition to the ’death’ state, daily mortality rates have been computed from the French mortality tables TF00-02
and TH00-02.

The stochastic processes driving transitions have been supposed locally Homogeneous Markov, except for the
disability termination which is driven by a locally Homogeneous Semi-Markov process, thanks to the Cox model which
enables to take into account the time elapsed since the inception of disability. The local Homogeneity property of the
different processes comes from the econometric design of rating factors: by construction, regression coefficients are
constant within each age class. Daily mortality rates have been supposed age-constant besides.

2 Modeling

Let us consider the three-state model : ’active’ (transient state e1) , ’disabled’ (transient state e2), and ’death’ (absorbing
state e3). On the graph 1 arrows depict possible transitions:

1. disablement: transition from the ’active’ state to the disability state,

2. recovery: transition from disability to the ’active’ state,

3. death of an active life: transition from the ’active’ state to death,

4. death of a disabled life: transition from the ’disabled’ state to death.

Time origin is considered to be the date of issuance of the written policy. We suppose the covered insured is x years
old. Besides, we suppose the disability incidence process to be Markov: the instantaneous rate of disablement does not
depend on the elapsed time within the ’active’ state. The underlying law is exponential, which is memoryless. In this
framework, a Poisson model for the disability incidence will enable us to build the transition law.

Intuitively, it seems rather relevant to get a decreasing recovery rate as a function of the disability spell duration.
It requires to set up a Semi-Markov model which makes the exit rate from disablement3 depend not only on the age,
but also on the duration of disability. A Cox model is thus appropriate and we will use one which takes also into
account unobserved heterogeneity. In the absence of data to assess a potential specific mortality among employees who
have been selected to estimate our econometric models, we have used the mortality rates arising from the TF00-02 and
TH00-02 tables. It seems however reasonable to deem that mortality rates might increase with the disability duration.

Moving to a Semi-Markov framework to model the recovery requires to take into account the length of stay in the
occupied state in order to predict the future of the underlying stochastic process. In respect of this matter, let us define
a bivariate process XD = {(Xt,Dt), t ≥ 0}, where Xt is a stochastic process with right-continuous paths providing the
occupied state at time t, and Dt is the duration of stay in this state. Formally,

Dt = max
{
s ≤ t | Xt = Xt−h for any 0 ≤ h ≤ s

}
.

For an insured aged x at policy issue (t = 0), the event
{
Xt = e2 ∩ Dt = s

}
means that at time t4, the insured has been

disabled for s units of time, i.e. s is the time spent in the state e2 up to time t since the latest transition in that state.

1by an accident or sickness
2A model has a representative agent when agents differ, but act in such a way that the sum of their choices is mathematically

equivalent to the decision of one individual or many identical individuals.
3due to recovery, not to mortality
4the variable t is often called seniority
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3 TRANSITION INTENSITIES

Finally, let us recall that in the Semi-Markov framework, the stochastic process Xt is deemed Semi-Markov if the process
{(Xt,Dt), t ≥ 0} is Markov. In this sense, moving to a Semi-Markov model amounts to introducing one more dimension.

Figure 1: Three-state Model for the insurance scheme.

3 Transition intensities

3.1 First assumptions and definitions

In what follows,we will use a Hamza-like notation in which the letters ’a’,’i’,’d’ denote the states ’active’, ’invalid’ and
’dead’. Haberman & Pitacco [8] also adopt this convention.

Since the active state is Markov, the instantaneous transition rate from this state to disability for an insured aged
x + t may be expressed as follows:

λai(x + t) = lim
4t↓0

Pr [Xt+4t = e2 | Xt = e1]
4t

,

and the instantaneous mortality rate from the active state at age x + t is given by

λad(x + t) = lim
4t↓0

Pr [Xt+4t = e3 | Xt = e1]
4t

.

For the transitions from the disability state, which have been assumed Semi-Markov, we also have a duration-in-current-
state dependence. Therefore we get:

λia(x + t, s) = lim
4t↓0

Pr [Xt+4t = e1 | Xt = e2,Dt = s]
4t

which is the recovery rate at t for an insured aged x at time 0 who has spent a time s in the disability state up to time t
since the latest transition to that state. We assume the instantaneous mortality rates from the active state and from the
disability state are equal:

λid(x + t) = λad(x + t).

Finally, we define the exit rate from the active state at age x + t by the sum

λa•(x + t) = λai(x + t) + λad(x + t),

and we also provide the exit rate from the disability state for an insured aged x + t, with s the time elapsed since the
latest transition into the disability state:

λi•(x + t, s) = λia(x + t; s) + λid(x + t).
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3 TRANSITION INTENSITIES

3.2 A Transition Intensity Approach (TIA)

Transition probabilities from the active state do not depend on the information regarding the path of the process,
whatever this information may be. Hence, for u ≤ t:

s,t−upai
x+u = Pr [Xt = e2 ∩Dt ≤ s | Xu = e1]

gives the probability that an active insured aged x + u will be disabled at the age x + t with a time spent in the disability
state less than or equal to s. Similarly,

t−upaa
x+u = Pr [Xt = e1 | Xu = e1]

is the probability that an insured which is active at age x + u will also be active at age x + t. Finally,

t−upad
x+u = Pr [Xt = e3 | Xu = e1]

corresponds to the probability that an active insured aged x + u will die during his lifetime until the age of x + t. In these
expressions, we note that the path of the insured risk between ages x + u and x + t is not a conditioning event. For any
times u ≤ t and s ≥ t − u, we get the equality:

s,t−upai
x+u + t−upaa

x+u + t−upad
x+u = 1.

Now we give some classical assumptions about transition probabilities:

lim
4t↓0

4tpaa
x+t = lim

4t↓0
s,4tpai

x+t = lim
4t↓0

4tpad
x+t = 0,

If a time interval has an infinitesimal length, no more than one jump (i.e. transition) can occur during this time interval.
Then, we define the transition probabilities from the disability state, for which we also need to make allowance

for the time elapsed since the latest transition into this state, except for the transition to the death state. Hence, the
conditioning event is more complex:

t−upia
x+u,s = Pr [Xt = e1 | Xu = e2,Du ≤ s]

t−upii
x+u,s = Pr [Xt = e2 | Xu = e2,Du ≤ s]

t−upid
x+u = Pr [Xt = e2 | Xu = e2].

The first of these expressions is the probability that an insured aged x+u, who has been disabled since the age of x+u− s
will be active at the age x + t. As above, we assume that, for any u ≤ t, and for any disability spell duration s:

t−upia
x+u,s + t−upii

x+u,s + t−upid
x+u = 1.

Thanks to an analytical calculation5, we get the following useful approximations for the transition probabilities from
the active state:

4tpai
x+t ≈ λai(x + t) 4t

4tpad
x+t ≈ λad(x + t) 4t

4tpaa
x+t ≈ 1 − λa•(x + t) 4t

where 4t is small enough.

Other calculations, which have been detailed in the technical annexes, also enable us to give the following approxi-
mations to the transition probabilities from the disability state:

5See technical annexes
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4 CALCULATION OF PREMIUMS AND RESERVES PERTAINING TO AN INSURANCE
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4tpia
x+t,s ≈ λia(x + t, s) 4t

4tpid
x+t ≈ λid(x + t) 4t

4tpii
x+t,s ≈ 1 − λi•(x + t, s) 4t

where 4t is small enough.

3.3 Expressions from occupancy probabilities

In accordance with the so-called ’Hamza notation’, we denote tpaa
x the probability that an insured aged x and active at

that age continuously remains active until the age of x + t. From the process {Dt, t ≥ 0}, we can write

τpaa
x+t = Pr [Xt+ε = e1 for any 0 ≤ ε ≤ τ | Xt = e1]

= Pr [Xt+τ = e1 ∩Dt+τ ≥ τ | Xt = e1].

We provide in the technical annexes the following equality for the occupancy probability for an active insured:

tpaa
x = exp

(
−

∫ t

0
λa•(x + τ) dτ

)
(1)

We define in a similar manner the probability that an insured aged x + t and disabled at that age, whose age at
current disability inception is x + t − s, continuously remains disabled until the age of x + t + τ.

τpii
x+t,s = Pr [Xt+ε = e2 for any 0 ≤ ε ≤ τ | Xt = e2,Dt = s],

We can get as above an explicit expression for the occupancy probability from the transition intensities. Indeed, we
prove in the technical annexes the following equality:

τpii
x+t,s = exp

(
−

∫ τ

0
λi•(x + t + ε, s + ε) dε

)
. (2)

4 Calculation of Premiums and Reserves pertaining to an insurance

policy

4.1 Discount factor

Considering a constant interest rate i, we denote v = (1 + i)−1 the annual discount rate and r = ln(1 + i) the resulting
constant force of interest. The present value at time s of an amount of e 1 paid out at time t, s < t, is:

v(s, t) = vt−s = exp(−(t − s) ln(1 + i)) = exp(−(t − s) r) (3)

If the interest rate is not constant, we denote r(u) the instantaneous interest rate at time u. r can be modelled by a
stochastic process. The discount factors v(t) on the time interval [0, t], and v(s, t) on the time interval [s, t] are then given
by
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4 CALCULATION OF PREMIUMS AND RESERVES PERTAINING TO AN INSURANCE
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v(t) = exp
(
−

∫ t

0
r(u) du

)
(4)

v(s, t) = exp
(
−

∫ t

s
r(u) du

)
=

v(t)
v(s)

(5)

4.2 Premium and Benefit Functions

Let n denote the term of the disability policy. Now we introduce the functions:

1. t 7→ Πa(t) : right-continous, non-negative and non-decreasing cumulative premium functions, which describe
the commitments of the insured. Premiums are paid by the insured for an amount∫ t+4t

t
dΠa(ζ) = Πa(t + 4t) −Πa(t).

while he is in the ’active’ state in the interval [t, t +4t]. The functions t 7→ Πa(t) can be expressed as the sum of an
absolutely continous function and jumps:

dΠa(t) = πa(t)dt + ∆Πa(t)

where
∆Πa(t) = Πa(t) −Πa(t−).

The set of discontinuity points of Πa(·) is denoted Disc
(
Πa

)
= {ta,0, ta,1, . . . , ta,q}. In case of periodic premiums, we

get Πa(t) = P dte, where P is a premium rate and dte is the smallest integer greater than or equal to t. In this case,∫ t

0
dΠa(ζ) will be a single sum.

2. (t, τ) 7→ cai(t, τ) : a deterministic function specifying lump sum payments due upon transition from the ’active’
state to the ’disabled’ state at time t after having spent a time τ in the active state. The functions t 7→ cai(t, t − υ)
are left-continuous for any υ > 0. If the ’one-shot’ payment does not depend on the time spent in the occupied
state (i.e. active) before the latest transition to disability, we only need to write a function cai(t). For our final
application, this scarcer supplementary benefit in case of transition will be omitted.

3. (t, τ) 7→ Bi(t, τ) : non-negative cumulative benefit functions, which describe the insurer’s commitments to
annuities at time t when the time elapsed since the latest transition to the ’disabled’ state is τ. The functions
t 7→ Bi(t, t − υ) are non-decreasing and right-continuous for any t ≥ υ > 0. The amount paid to the insured
(disabled at time t with a disability time length equal to s) from time t to t + 4t is∫ t+4t

t
dBi(ζ; ζ − s) = Bi(t + 4t, t + 4t − s) − Bi(t, t − s)

The functions t 7→ Bi(t, t − s) can be expressed as the sum of an absolutely continous function and jumps (pure
endowments):

dBi(t, t − s) = bi(t, t − s)dt + ∆Bi(t, t − s)

where
∆Bi(t, t − s) = Bi(t, t − s) − Bi(t−, (t−) − s)

∆Bi(t, t − s) is the benefit paid at t to the insured who has been disabled at that time with a duration t − s since
the latest onset of disability. For any s > 0, the set of discontinuity points of t 7→ Bi(t, t − s), whose domain is the
subset of real numbers t such that t > s, is denoted Discs

(
Bi

)
= {ti,s,0, ti,s,1, . . . , ti,s,qs }. If the annuities do not depend

on the time spent in the ’disabled’ state, the left-continuous cumulative annuities on [0, t] will be denoted Bi(t).
For instance, in case of periodic benefit (e 1), we can write Bi(t) = dte or Bi(t) = dte − 1, t > 0, depending on the
payment mode adopted (in advance or in arrears). In the case of an annuity with a deferred period d, the benefit
function is given by

Bi(t, τ) = b τ 1[t − τ ≥ d].
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4 CALCULATION OF PREMIUMS AND RESERVES PERTAINING TO AN INSURANCE
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Prior to expressing premiums and reserves, we still have to specify a right-continuous counting process defined
by Nai(t) = ] {τ; Xτ− = e1 = a,Xτ = e2 = i, τ ∈ (0, t]} , providing the number of transitions from the ’active’ state to the
’disabled’ state during the time interval (0, t]. The link between this counting process and the instantaneous rate of
transition to the disability state for an insured aged x at time 0 is given by the following relation:

E
[
dNai(t)

∣∣∣ (Xs,Ds)0≤s≤t

]
= λai(x + t) 1 [Xt− = e1] dt.

4.3 Premium calculation using the equivalence principle

In the framework defined supra, considering the lump sum cai(·) depends only on the time t elapsed since policy issue,
the expected present value of benefits, i.e. the net single premium (below, SP stands for Single-Premium) is given by:

SP = E

[ ∫ n

0
e−

∫ t
0 r(u) du 1 [Xt = e2]

(
dBi(t,Dt) + cai(t)dNai(t)

)]
=

∫ n

t=0
tpaa

x λai(x + t)
( ∫ n

ε=t
ε−tpii

x+t,0 e−
∫ ε
0 r(u) du dBi(ε, ε − t) + cai(t)

)
dt.

(6)

In case the benefits do not depend on the time spent in the ’disabled’ state, (6) may be rewritten as

SP =

∫ n

t=0
e−

∫ t
0 r(u) du

tpai
x

(
dBi(t) + cai(t)λai(x + t)dt

)
. (7)

With most policies, the premiums are waived while the income benefit is being paid. By definition, the equivalence
principle is fulfilled if and only if the expected present value (actuarial value) of future benefits is equal to the actuarial
value of future premiums, i.e.

SP =

∫ n

t=0
e−

∫ t
0 r(u) du

tpaa
x dΠa(t). (8)

When we neglect the lump sum payment cai(·) and assume that the premium rate and the annuity rate are constant,
i.e.

Πa(t) = πt and Bi(t) = bt,

the premium level depends on the actuarial value of a unit-level premium paid in the ’active’ state during the period
[0,n]

aaa
x,n| =

∫ n

0
e−

∫ t
0 r(u) du

tpaa
x dt,

and should be linked to the actuarial value of a unit-level benefit paid in the ’disabled’ state during the same coverage
period

aai
x,n| =

∫ n

0
e−

∫ t
0 r(u) du

tpai
x dt,

since we obtain from the equivalence principle

π = b
aai

x,n|

aaa
x,n|
.

Levikson, Frostig, & Bshouty [14] have built an evaluation algorithm for this constant premium rate, which does not
require to use transition probabilities.

4.4 Reserves calculation

The future commitments on the part of the insurer and those of the insured are spread across time and it is impossible
for the insurance company to exactly match its cash outflows with its cash inflows. Indeed, the premium paid by the
insured precedes the potential benefits paid out by the insurer in virtue of the inversion of the production cycle. This
intrinsic mismatch between inflows and outflows leads the insurer to report at time t his net commitment towards the
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4 CALCULATION OF PREMIUMS AND RESERVES PERTAINING TO AN INSURANCE
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insured in the form of benefit reserves, denoted V(t), to fulfill his liabilities in the long run. The prospective reserve
at time t is defined as the actuarial value i.e. the conditional expectation of the present value, given the path of the
insured risk up to time t, of future benefits less the actuarial value of future premiums. At a future time t the story of
the insured risk is summarized by the filtration generated by the stochastic processes {Xs, 0 ≤ s ≤ t} and {Ds, 0 ≤ s ≤ t}.
Any conditioning path can therefore be expressed by the ’finite information’ given by the set of transition times and
the set of states visited by the path. As for the premium calculation, we focus on the net reserves, in the sense that
taxes, issue costs, overhead expenses such as claims management and claims administration expenses and even safety
loadings have not been included in the cash flow projections. For any time t of evaluation, a specific prospective reserve
is defined for each state which may be occupied by the risk at this time. When disability benefits are concerned, two
prospective reserves must be defined, pertaining to the ’active’ state and the ’disabled’ state respectively. In the light
of the above remarks, we can express the net prospective reserves at time t for an active policyholder aged x at policy
issue as follows

Va(t) = E

[ ∫ n+

t
e−

∫ z
t r(u) du 1[Xz = e2] dBi(z,Dz)

∣∣∣∣∣ Xt = e1

]
−E

[ ∫ n

t
e−

∫ z
t r(u) du 1[Xz = e1] dΠa(z)

∣∣∣ Xt = e1

]
=

∫ n+

z=t
z−tpaa

x+t λai(x + z)
( ∫ n

ε=z
ε−zpii

x+z,0 e−
∫ ε
t r(u) du dBi(ε, ε − z)

)
dz −

∫ n

z=t
e−

∫ z
t r(u) du

z−tpaa
x+t dΠa(z).

(9)

As regards the disabled prospective reserve at time t, we also need to take into account the time spent in
disability:

Vi(t, s) = E

[ ∫ n+

t
e−

∫ z
t r(u) du 1[Xz = e2] dBi(z,Dz)

∣∣∣∣∣ Xt = e2,Dt = s
]
−E

[ ∫ n

t
e−

∫ z
t r(u) du 1[Xz = e1] dΠa(z)

∣∣∣ Xt = e2

]
=

∫ n+

z=t
z−tpii

x+t e−
∫ z
t r(u) du dBi(z, z − t + s) +

∫ n+

z=t
z−tpia

x+t λai(x + z)
( ∫ n

ε=z
ε−zpii

x+z,0 e−
∫ ε
t r(u) du dBi(ε, ε − z)

)
dz

−

∫ n

z=t
e−

∫ z
t r(u) du

z−tpaa
x+t dΠa(z).

4.5 Generalized Thiele’s differential equations

Thiele’s differential equation was discovered in 1875 for the case of a single-life assurance. It provides an expression
of the reserve dynamics, written in differential form, which is particularly easy to interpret. This tractable differential
transform can be extended and generalized to a broader disability insurance context. As mentioned above, two reserves
must be analyzed by the insurance undertaking, depending on the state occupied by the insured. A Thiele’s transfor-
mation can account for changes in reserves Va(t) and Vi(t, s) over time.

Proposition 4.1 Considering an insured aged x at time of policy issue, the differential of the prospective reserve pertaining to the
’active’ state at time t < Disc

(
Πa

)
6 is given by

dVa(t) = r(t) Va(t) dt + πa(t) dt − λai(x + t) dt
(
cai(t) + Vi(t, 0) − Va(t)

)
+ λad(x + t) dt Va(t) (10)

This differential equation is valid in any open interval (ta, j, ta, j+1), j = 0, 1, . . . , q − 1 and must satisfy the conditions

Va(ta, j) = Va(ta, j
−) + ∆Πa(ta, j), j = 0, 1, . . . , q. (11)

(10) and (11) determine the solution Va(·) uniquely.

Proof We turn back to the reserve given by (9). We are going to derive a backward differential equation through a
direct backward construction. To achieve this, let us suppose the policy is in the ’active’ state at time t < Disc

(
Πa

)
so

that any inflow ∆Πa(t) vanishes. Now we can use the law of iterated expectation, conditioning on what happens in
the interval (t, t + dt] : with probability 1 − λa•(x + t) dt + o(dt) the insured remains active and the conditional expected

6or, equivalently, at age x + t
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value of the reserve is e−r(t)dt Va(t + dt) − πa(t) dt; with probability λai(x + t) dt + o(dt) the insured becomes disabled, and
the conditional expected value is cai(t) + e−r(t)dt Vi(t + dt, 0); with probability λad(x + t) dt + o(dt) the insured dies, and the
conditional expected value is 0, because the death risk is not covered. We gather these quantities as follows:

Va(t) = (1 − λa•(x + t) dt) e−r(t)dt Va(t + dt) − πa(t) dt

+ λai(x + t) dt
(
cai(t) + e−r(t)dt Vi(t + dt, 0)

)
+ o(dt)

which may be rewritten, subtracting Va(t + dt) on both sides

Va(t) − Va(t + dt) = −(λai(x + t) + λad(x + t)) dt e−r(t)dt Va(t + dt) + (e−r(t)dt
− 1) Va(t + dt) − πa(t) dt

+ λai(x + t) dt
(
cai(t) + e−r(t)dt Vi(t + dt, 0)

)
+ o(dt)

Now making dt→ 0 and observing that e−r(t)dt = 1 − r(t)dt + o(dt), one arrives at

dVa(t) = r(t) Va(t) dt + πa(t) dt − λai(x + t) dt (cai(t) + Vi(t, 0) − Va(t)) + λad(x + t) dt Va(t)

which is exactly (10). �

Proposition 4.2 Considering an insured aged x at time of policy issue, the differential of the prospective disabled reserve Vi(t, s)
to establish at time t < Discs

(
Bi

)
with a duration s since the disability onset may be expressed as follows:

dtVi(t, s) = r(t) Vi(t, s) dt − dsVi(t, s) − bi(t, t − s) ds − λia(x + t, s) dt
(
Va(t) − Vi(t, s)

)
+ λid(x + t, s) dt Vi(t, s) (12)

This differential equation is valid in any open interval (ti,s, j, ti,s, j+1), j = 0, 1, . . . , qs − 1 and must satisfy the conditions

Vi(ti,s, j) = Vi(ti,s, j
−) − ∆Bi(ti,s, j, ti,s, j − s), j = 0, 1, . . . , qs. (13)

(12) and (13) determine the solution t 7→ Vi(t, s) (well-defined for t ≥ s) uniquely.

Proof Here again, we aim to derive a backward differential equation governing the evolution of the disabled reserve.
To achieve this, let us suppose the policy is in the ’disabled’ state at time t < Discs

(
Bi

)
so that any benefit jump term

vanishes, with a duration s since the disability onset. Now, conditioning on what happens in a small time interval
(t, t + dt] we write

Vi(t, s) = (1 − λi•(x + t, s) dt) e−r(t)dt Vi(t + dt, s + dt) + bi(t, t − s) dt

+ λia(x + t, s) dt e−r(t)dt Va(t + dt) + o(dt)

which may be rewritten, subtracting Vi(t + dt, s + dt) on both sides

(
Vi(t, s) − Vi(t + dt, s)

)
+
(
Vi(t + dt, s) − Vi(t + dt, s + dt)

)
= −(λia(x + t) + λid(x + t)) dt e−r(t)dt Vi(t + dt, s + dt)

+ (e−r(t)dt
− 1) Vi(t + dt, s + dt) + bi(t, t − s) dt

+ λia(x + t, s) dt e−r(t)dt Va(t + dt) + o(dt)

Now making dt→ 0 and using e−r(t)dt = 1 − r(t)dt + o(dt), one arrives at
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dtVi(t, s) + dsVi(t, s) = r(t) Vi(t, s) dt − bi(t, t − s) dt − λia(x + t, s) dt (Va(t) − Vi(t, s)) + λid(x + t, s) dt Vi(t, s)

which provides (12). �

The right-hand side of (10) exhibits positive and negative contributions determining the increment of the active
reserve:

1. Va(t) bears interest at a rate r(t), so that the reserve instantaneously increases with an amount equal to r(t)Va(t)dt.

2. The active policyholder pays premiums for an amount of πa(t) dt from time t to time t + dt, which is added to the
currently held reserves.

3. In the event of a transition from e1 to e2 at time t7, the insurance undertaking pays the lump sum cai(t) and sets aside
the reserve Vi(t, 0), which reduces the level of the active reserve set apart at time t (i.e. when the policyholder is
in the ’active’ state). To supply the disabled reserve, he has at his disposal an amount of Va(t), since the insured is
no longer in the ’active’ state. As a result, the new conditioning information the insurer should take into account
to determine and evaluate the (disabled) reserve is the fact that the insured is in e2 at time t with a length of stay
equal to zero.

4. In the event of a transition from the ’active’ state to death, an amount of Va(t) becomes available to support the
company’s insurance business.

The relation (12) may be interpreted in a similar manner:

1. Vi(t) generates interest at a rate r(t), so that the reserve instantaneously increases with an amount equal to
r(t)Vi(t)dt.

2. The insurer pays the annuity bi(t, t − s) dt between t and t + dt, the amount of which shall be deducted from the
reserve.

3. The infinitesimal extension of the time spent in the ’disabled’ state between t and t+ reduces the reserve by an
amount of dsVi(t, s).

4. In the event of a transition from e2 to e1 (recovery) at time t with a disability duration equal to s, the insurance
undertaking sets aside the reserve Va(t), which reduces the level of the disabled reserve set apart at time t (i.e.
when the policyholder is in the ’disabled’ state). To supply the active reserve, he has at his disposal an amount
of Vi(t, s), since the insured is no longer in the ’disabled’ state.

5. In the event of a transition from disability to death after a time spent in this state equal to s, an amount of Vi(t, s)
becomes available to support the company’s insurance business.

5 Procedures of simulation

5.1 Representation of the bivariate process XD

From the process XD = {(Xt,Dt), t ≥ 0}, we can define the following processes:

1. a process of transition times {T j, j = 0, 1, . . . } defined by

T j = inf{t > T j−1 | Xt , XT j−1 }, j ≥ 1,

with T0 = 0. As a result we get T0 < T1 < T2 < . . . almost surely.

2. a process of sojourn times {Y j, j = 0, 1, . . . } defined by

Y j = T j − T j−1, j ≥ 1,

7or, equivalently, at age x + t when we consider an insured active at t and aged x at time of policy issue

9
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with the convention Y0 = 0. Y j as thus defined represents the time spent in the state XT j−1 between (j-1)th transition
and jth transition, i.e. between T j−1 and T j. Random variables Y j, j = 1, 2, . . . are almost surely non-negative.

We see immediately that

T j =

j∑
k=1

Y j, j = 1, 2, . . .

As a result, the information provided by the path (Xt,Dt)(ω) is equivalent to the ’finite information’ given by one of the
two following bivariate processes:

1.
{
(T j,XT j ), j = 0, 1, . . .

}
2.

{
(Y j,XT j ), j = 0, 1, . . .

}
The first bivariate process gives the set of transition times and the set of states visited by the path. The second bivariate
process provides the sojourn times between each transition and the states visited. Thus, the process XD is equivalent
to either of these two bivariate processes.

5.2 General simulation procedure

Previous expressions are helpful to simulate sample paths from a Markov stochastic bivariate process XD, i.e. from
a Semi-Markov univariate process X. Given the initial state X(0) occupied by the risk at policy issue, we just need
to simulate a sequence of sojourn times and states visited. Let us suppose that at time Tn, i.e. at nth transition, the
risk occupies the state ein . Then, we can provide the distribution of the sojourn time in the state ein given that the
latest transition to ein occurred at time Tn, which is equivalent to express the following conditional survival function,
pertaining to the random variable Yn+1

Pr [Yn+1 > t | XTn = ein ,Tn = tn], in = 1, 2, 3, (14)

Then we have to apply an inverse transformation method to the cumulative distribution function arising from (14) to
get a realization of Tn+1 using the standard uniform distribution on the closed interval [0, 1]. As usual, inversion is
easier to achieve when the instantaneous transition rates are piecewise constant.

At the end of the sojourn time yn+1, we have to simulate the destination state of the insured. If the insured leaves
the state ein at time tn+1, he will then visit the state e j with probability

λin j(tn, tn+1 − tn)
λin•(tn, tn+1 − tn)

Obviously, these quantities of interest must be previously estimated in a robust and reliable manner, because
otherwise the actuary could not simulate any path. Indeed, we need to partition the closed interval [0, 1] into subintervals
such as the length of each subinterval corresponds to the probability of one of the events that can occur. Since the sum
of the probabilities of all the events is exactly equal to one, each subinterval corresponds to one, and only one, event. As
a further step, we can then draw a new random sample from the standard uniform distribution on [0, 1] and determine
the sub-interval of [0, 1] which contains this realization to get a simulation of the destination state.

Finally, we can summarize the simulation procedure as follows:

Step 1 We generate a random draw u from the standard uniform distribution on the closed interval [0, 1] and determine
the initial state from the vector q = (q1, q2, q3) whose ith component gives the probability that the risk is in the
state ei at policy issue, 0 ≤ i ≤ 3. To achieve this, we divide the closed interval [0, 1] using the partition provided
by q. Let us denote (ϑ)0≤i≤3 this subdivision, where ϑ0 ≡ 0, ϑ1 = q1, ϑ2 = q1 + q2, and ϑ3 ≡ 1. Now all we need to
do is to determine the sub-interval of [0, 1] which contains u. If u ∈ [0, ϑ1] the initial state is e1. If u ∈ [ϑ1, ϑ2] the
initial state is e2. Otherwise, the insured is in the state e3 at policy issue.

Step 2 We simulate the first sojourn time y1 in the state ei0 which has been previously selected. To achieve this, we
apply an inversion to the c.d.f. of the underlying random duration.

10
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Step 3 We simulate the destination state ei1 of the process at the end of the first sojour time y1. To do this, we generate a
random draw from a uniform distribution and use the partition arising from the probabilitiesλi0 j(t1, y1)/λi0•(t1, y1),
j , ei0 .

Step 4 We go back to step 2 to simulate the second sojourn time y2. The state ei1 and the sojourn time y2 replace ei0 and
y1, respectively.

...

Final step End of the path when death occurs or at the expiration of the contract.

6 Simulation of the three-state model

The considered time unit in the model detailed below is the day: we assume t denotes a number of days.

6.1 Formal description of the model

This model aims at getting the usual Actuarial Present Values, namely the premium and the reserves, in accordance
with the characteristics of the insured (gender, age, sector of activity, type of working area). Different tariff cells have
been designed:

• for the return to work from an absence due to sickness or accident: from the crossing of the mutually exclusive
and exhaustive categories included in the grouped variables involved in the statistically selected Cox model with
unobserved heterogeneity displayed on the table 1.

• for the transition from work to disability (work stoppage incidence): from the crossing of the categories defining
grouped variables involved in the statistically selected Poisson model fitting our data. It is displayed on the table
2.

• for the transition to death from any other state: from the exhaustive crossing of the different ages and the two
categories splitting the gender variable. Due to data limitations, rating factors such as the sector of activity and
the type of region in which the considered employee works have not been included in the variables predicting
mortality. Only age and gender - with the TH00-02 and TF00-02 tables - have an influence on mortality.

Due to our modeling, the nature of the underlying stochastic processes will vary depending on the considered
transition:

• in the case of the "disabled→ active" transition, the use of a Cox model and the inclusion of the age at the onset of
the work stoppage in the set of explanatory variables lead to a Semi-Markov process. Indeed, the return-to-work
rates depend not only on the date of disability inception but also on the time elapsed since the latest transition
in the disability state. Moreover, the process is also locally homogeneous since we have designed age categories
which influence the Cox output through constant coefficients.

• in the case of the "active→ disabled" transition, the survival function in the ’active’ state has an exponential form.
Indeed, the waiting times between jumps8 of a Poisson process follow exponential distributions. The intensity
of the counting process (Poisson in our framework) is piecewise constant. In fact, in each tariff cell, defined by
the crossing of an age group, a gender, a region of work and an activity sector, the transition intensity is constant.
We have thus modelled a locally Time-Homogeneous Markov process. Using piecewise constant intensities
is an effective way of being consistent with the required time-inhomogeneity property9 while preserving the
tractability of constant intensities.

• concerning the risk of dying from the active state or from disability, transition intensities only depend on the
discrete age variable and the gender. Thus, the underlying process is again locally Homogeneous Markov.

11
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Mean coef exp(coef) se(coef) Pr(>|w|)

M 0.542 0 1 (ref)
F 0.458 -0.025 0.976 0.006 0.000
Age-36-40 0.143 0 1 (ref)
Age-16-25 0.029 0.216 1.241 0.015 0.000
Age-26-30 0.088 0.113 1.120 0.011 0.000
Age-31-35 0.120 0.041 1.042 0.010 0.000
Age-41-45 0.157 -0.048 0.953 0.010 0.000
Age-46-50 0.155 -0.113 0.893 0.010 0.000
Age-51-55 0.171 -0.218 0.804 0.011 0.000
Age-56-65 0.136 -0.294 0.745 0.012 0.000
Construction 0.097 0 1 (ref)
Consumer goods industry ;
Energy ; Building security
services

0.120 -0.034 0.967 0.013 0.008

Publishing, audiovisual and
media

0.036 0.036 1.037 0.017 0.035

Automotive industry 0.050 0.042 1.043 0.016 0.007
Mechanical Engineering ;
Raw material

0.163 0.057 1.058 0.011 0.000

Food industry ; Finance &
Insurance

0.096 0.058 1.060 0.013 0.000

Retail services ; Transport ;
R&D; Consulting

0.218 -0.001 0.999 0.011 0.903

IT & Web Technologies 0.042 0.102 1.108 0.015 0.000
(Tele)Communications
Equipment

0.033 0.050 1.051 0.018 0.006

Hotels & Restaurants 0.102 -0.245 0.782 0.014 0.000
Personal Services & Educa-
tion

0.044 -0.071 0.931 0.017 0.000

Rural areas ; Medium-sized
cities

0.651 0 1 (ref)

Large cities 0.349 0.091 1.095 0.006 0.000

Table 1: Cox MPH (frailty gamma) model with Efron estimation.

The table 3 gives an overview of the final modellings for each possible transition. We specify that the disability incidence
and severity distributions have voluntarily been estimated without splitting the disability state into different states10

for the sake of simplicity and tractability of the final actuarial model we carry out. However, splitting the disability
state into disablement by illness and disablement by accident might be strongly relevant. This approach would lead to
a four-state model and applies the same logic as Cordeiro [4]. We now have to clarify the procedures which will enable
us to get the different intensities and corresponding survival functions, according to the type of transition, from the
aforementioned regression model outputs.

6.2 Calculation of the instantaneous transition rates from work to disability λai

These rates have been estimated using the aforementioned Poisson model. The following relationship provides an
explicit expression of these rates from the vector θ of the regression coefficients:

λai(t | Z = z) = exp(θ′z) (15)

where Z is the vector of regressors. Since the intensities are piecewise constant, we get the locally homogeneous Markov
property. These rates depend only on age. The time spent in the active state does not impact them, in accordance with
the Markov hypothesis. Disregarding the exit from the active state caused by death, we can define a "partial" survival

8in particular the waiting time until the first jump
9we have there a duration-since-initiation dependence through the age effect

10in particular without distinguishing between the sickness and accident causes
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Estimate Std. Error z value Pr(>|z|) Significance

(Intercept) -1.0746 0.0110 -97.5670 0.0000 ***
M 0
F 0.3457 0.0084 40.9480 0.0000 ***
Age-31-45 0
Age-61-65 -0.2446 0.0368 -6.6497 0.0000 ***
Age-16-25 0.2874 0.0207 13.8750 0.0000 ***
Age-26-30 0.0313 0.0132 2.3678 0.0179 *
Age-46-50 -0.0432 0.0121 -3.5796 0.0003 ***
Age-51-60 0.0449 0.0103 4.3420 0.0000 ***
Construction ; Raw material 0
Consumer goods industry -0.0395 0.0183 -2.1613 0.0307 *
Publishing, audiovisual and
media

-0.3630 0.0226 -16.0408 0.0000 ***

Automotive industry ; Me-
chanical Engineering ; Ho-
tels & Restaurants

0.0571 0.0125 4.5585 0.0000 ***

Energy -0.2555 0.0244 -10.4558 0.0000 ***
Food industry -0.1416 0.0286 -4.9543 0.0000 ***
Retail services -0.3032 0.0169 -17.9065 0.0000 ***
Transport ; Building security
services

0.1785 0.0157 11.3524 0.0000 ***

Finance & Insurance -0.2800 0.0168 -16.6795 0.0000 ***
IT & Web Technologies -0.5796 0.0302 -19.1805 0.0000 ***
R&D ; Consulting -0.2608 0.0192 -13.5925 0.0000 ***
(Tele)Communications
Equipment

-0.2302 0.0226 -10.1774 0.0000 ***

Personal Services & Educa-
tion

-0.4039 0.0209 -19.3499 0.0000 ***

Rural areas 0
Medium-sized cities -0.0822 0.0108 -7.6368 0.0000 ***
Large cities -0.1714 0.0095 -18.0710 0.0000 ***

Table 2: Poisson Model.

Transition Modeling Resulting Process

Disablement Poisson Locally Time-Homogeneous Markov renewal
Recovery Cox MPH Locally Time-Homogeneous Semi-Markov
Death of an active life Mortality Tables Locally Time-Homogeneous Markov renewal
Death of a disabled life Mortality Tables Locally Time-Homogeneous Markov renewal

Table 3: Overview of our multi-state model.

function in the active state, for any covariates vector z:

Pr [Ta > t | Z = z] = exp
(
− exp(θ′z) t

)
.

These incomplete survival functions11 are shown in the table 4 where we have restricted ourselves to the "Finance &
Insurance" and "Large cities" categories to highlight the sensitivity to age group and gender. The true survival function
will be provided by adding the daily mortality rates, defined below. In fact, the required mathematical operation
amounts to multiplying the specific survival functions for each transition, so that the transition model from the active
state can be construed as an independent competing risks12 model, where the two competing risks are the risks of
becoming disabled and dying. The term that precedes t in the exponential functions of the table 4 is the (constant) daily
transition intensity,13 specific to each set of covariates.

11in the sense that the mortality risk is not yet taken into consideration
12i.e. that produce cause-specific hazards
13we have divided the annual intensity given by the Poisson model - previously estimated using a one-year exposure - by 365.25 to

get the desired daily intensity.
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Age Group Gender
F M

16-25 exp(−0.001331 t) exp(−0.000942 t)
26-30 exp(−0.001030 t) exp(−0.000729 t)
31-45 exp(−0.000998 t) exp(−0.000707 t)
46-50 exp(−0.000956 t) exp(−0.000677 t)
51-60 exp(−0.001044 t) exp(−0.000739 t)
61-66 exp(−0.000782 t) exp(−0.000553 t)

Table 4: Probability (rounded to 6 digits after the point) of remaining in the active state more than t days,
depending on the age category and the gender, in the "Finance and Insurance" sector and the Large cities,
under the assumption that only one type of transition from the active state is possible, i.e. becoming
disabled.

Age Category Gender
F M

16-25 1.404948 1.440514
26-30 1.267442 1.299527
31-35 1.179393 1.209250
36-40 1.132016 1.160673
41-45 1.078963 1.106277
46-50 1.011061 1.036656
51-55 0.910283 0.933327
56-66 0.843665 0.865022

Table 5: Values (rounded to 6 digits after the point) of the scores exp(z′β) emanating from the final Cox
model on the recovery hazard rate, depending on gender and age, for the "Finance & Insurance" sector in
Large cities. The greater the score is the faster the recovery is.

6.3 Calculation of the instantaneous recovery rates λia

These rates have been estimated thanks to a Cox MPH (Mixed Proportional Hazard) model with unobserved heterogeneity,
which allows us to model the instantaneous recovery rate as follows:

λia(t | Z = z, v) = λ0,ia(t) exp(z′β) v,

where λ0,ia(·) is the baseline hazard function, v is the frailty term, which follows a Gamma distribution with expectation
equal to 1, and z is the considered covariates vector. These rates are dependent both upon the age and upon the duration
of presence in the disabiliy state, in accordance with the desired Semi-Markov framework. We then show in the table 5
the values of exp (z′β), depending on gender and age group, for the "Finance & Insurance" sector in Large cities.

6.4 Calculation of the mortality intensities λad = λid

In accordance with the International Association of Actuaries (IAA) standard notations, we denote `x an estimate (at
time 0) of the number of individuals alive at age x (x = 1, 2, . . . , ω), out of the initial ’cohort’ of `0 individuals. As ω
denotes the (integer) maximum age, we have by definition `ω > 0 and `ω+1 = 0. From `x, we easily deduce the number
dx of individuals dead at age x

dx = `x − `x+1,

and the annual death rate at age x

qx =
dx

`x
,
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which provides the annual survival probability at age x, denoted px:

px = 1 − qx =
`x+1

`x
.

We can finally introduce the instantaneous mortality rate at age x, denoted µx (IAA standard again), expressed in
annualised form as follows:

µx = −
1
`x

d`x

dx
.

These instantaneous mortality rates will then enable us to write the survival probability between ages x and x + c using
the following relation :

cpx =
`x+c

`x
= exp

(
−

∫ c

0
µx+s ds

)
.

These relations can be efficiently used with regard to the simulation phase. Insofar as we have chosen to write
the successive sojourn times on a daily basis, we need to provide daily hazard rates λid = λad between 0 and t so as
to estimate the two targeted probabilities of survival - in the active and disability states - up to t days. The method
we put forward here is easy to carry out and is premised on the assumption that the daily mortality intensities are
constant between two successive ages. So now we implicitly use a daily unit time frame for our intensities and survival
probabilities. We then approximate the integral

∫ t

0
λid(x × 365.25 + s)ds using the sum

∑
s≤t λ̂id(x × 365.25 + s), where

λ̂id(x × 365.25 + s) is the daily mortality rate on the sth day following the date of the xth birthday of the representative
policyholder. We finally use the assumption of constant daily instantaneous mortality rates between two succesive ages
to get the quantity of interest, i.e. an estimation of these daily intensities using the qx. We do indeed have the following
conversion to a daily unit:

qx = 1 − exp
(
−

∫ 365.25

0
λid(x × 365.25 + s) ds

)
≈︸︷︷︸

by assumption

1 − exp (−365.25 × λ̂id(x × 365.25))

which provides the estimation

λ̂id(x × 365.25) = −
ln

(
1 − qx

)
365.25

. (16)

This approach is approximately equivalent to calculating daily mortality rates, that we denote qx, j, where j stands for
the day, from the rates qx. Indeed, using again the assumption of constant daily mortality intensities between two
consecutive ages, and supposing the daily survival probabilities are independent, we get the following equivalence:

1 − qx = (1 − qx, j)365.25
⇐⇒ qx, j = 1 − (1 − qx)1/365.25.

We apply the approach (16) using the certified French mortality - TF00-02 and TH00-02 - tables. As mortality
estimation is beyond the scope of this paper, this process did not strike us as being particularly inappropriate, even if
these tables are no longer the ideal reflection of the current French mortality.

Graph 2 depicts both annual and daily mortality rates, depending on age and gender, from the TF00-02 and TH00-02
tables and the formula (16).

6.5 Construction of the survival probabilites and formulation of the Smirnov trans-
forms

Having estimated the intensities that are specific to each type of transition, we can easily calculate the survival proba-
bilities given by the relations (1) and (2). However, the time unit used in (1) and (2) is the year, while our considered
three-state model is built upon a daily time unit. This problem can be readily handled by a straightforward linear
transformation, which enables us to transpose the aforementioned relations into a framework based on daily time unit.
Indeed, we just have to replace the annual age x in (1) and (2) by x × 365.25. As a consequence of this substitution
t→ 365.25 × t, we must appropriately transform the interval of integration.
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Figure 2: Annual and Daily mortality rates, depending on age and gender, and calculated from the TF00-02
and TH00-02 tables.

We can then convert the integrals (cumulative hazards) in (1) and (2) to finite sums since the all-cause exit rates
(i.e. whatever the cause) from the active state λa•, and from the disability state λi•, are constant over daily intervals. To
achieve that, we just have to divide the interval of integration of the cumulative hazard into daily intervals over which
the hazard function is assumed to take a constant value. Then, using this partition and the additivity of integration on
intervals (Chasles relation), we get a sum equal to the initial integrated hazard.

Compared with the relations (1) and (2), we now include the exact age14 (as a continuous variable) at the time
at which latest transition to the current state occured in the covariates vector Z. This choice enables us to alleviate
notations and lies in the fact that the explanatory variables, in both the disability inception (Poisson) and the recovery
(Cox) models, but also in the mortality model, take into account the real-valued age at the first day of the sojourn in the
current state.

Let us now denote Ta and Ti the duration random variables related to the sojourn times in the active state and the
disability state, respectively. We also denote λ̂ia(t | Z) the estimated transition rate from the disability state to the active
state for a policyholder described by a covariates vector Z at time t. The presence of the age at latest transition in the
regressors Z and the sojourn duration t ensure the conditions required to set up a Semi-Markov framework. Then let
λ̂ai(t | Z) and λ̂ad(t | Z) = λ̂id(t | Z) be the other estimated transition rates. These intensities are locally constant15 and
independent from the duration of presence in the active state or in the disability state. We get back to the Locally
Homogeneous Markov framework. The following result holds:

Proposition 6.1 Given a representative insured described by a vector z and the framework detailed supra, Smirnov transforms
providing holding times in the respective transient states may be expressed as follows:

( Fa
z )↼(u) = min

{
t ∈ N

∣∣∣∣∣ ∑
s∈N | s≤t

exp(θ̂′z) + λ̂ad(s | Z = z) ≥ − ln u
}
, (17a)

( Fi
z )↼(u) = min

{
t ∈ N

∣∣∣∣∣ ∑
s∈N | s≤t

λ̂0,ia(s) exp(z′β̂) + λ̂id(s | Z = z) ≥ − ln u
}
. (17b)

Proof We can estimate the probability of survival in the active state Pr [Ta > t | Z] by the estimator

14and no longer the attained age at the birthday immediately prior to the date of the latest transition
15constant between two consecutive ages for the mortality and constant within age categories for the disablement process. Other

covariates have not been supposed time-varying

16



6 SIMULATION OF THE THREE-STATE MODEL

exp
(
−

∑
s∈N | s≤t

λ̂ai(s | Z) + λ̂ad(s | Z)
)

= exp
(
−

∑
s∈N | s≤t

exp(θ̂′Z) + λ̂ad(s | Z)
)
, (18)

and use the following estimator for the survival probability in the disability state Pr [Ti > t | Z]

exp
(
−

∑
s∈N | s≤t

λ̂ia(s | Z) + λ̂id(s | Z)
)

= exp
(
−

∑
s∈N | s≤t

λ̂0,ia(s) exp(Z′β̂) + λ̂id(s | Z)
)
. (19)

We can easily simulate sojourn durations from the estimators (18) and (19). We just have to write the appropriate
inverse transform algorithm. To achieve this, we denote ta

z and ti
z realizations of the random variables whose respective

distributions are the conditional probability distribution of Ta given Z = z and the conditional probability distribution
of Ti given the occurence of the value z of Z. We denote these distributions dFa

z and dFi
z respectively. Furthermore, let

u be a random value drawn from the standard uniform distribution on the closed interval [0, 1]. Using the generalized
inverse cumulative distribution function finally provides

( Fa
z )↼(u) = min

{
t ∈ N

∣∣∣∣∣ 1 − exp
(
−

∑
s∈N | s≤t

λ̂ai(s | Z = z) + λ̂ad(s | Z = z)
)
≥ u

}
,

( Fi
z )↼(u) = min

{
t ∈ N

∣∣∣∣∣ 1 − exp
(
−

∑
s∈N | s≤t

λ̂0,ia(s) exp(z′β̂) + λ̂id(s | Z = z)
)
≥ u

}
.

Thanks to a logarithmic transformation these expressions can be rewritten as follows

( Fa
z )↼(u) = min

{
t ∈ N

∣∣∣∣∣ ∑
s∈N | s≤t

exp(θ̂′z) + λ̂ad(s | Z = z) ≥ − ln (1 − u)
}
,

( Fi
z )↼(u) = min

{
t ∈ N

∣∣∣∣∣ ∑
s∈N | s≤t

λ̂0,ia(s) exp(z′β̂) + λ̂id(s | Z = z) ≥ − ln (1 − u)
}
.

which provide the desired results, since U d
= 1−U. �

6.6 Implementation of the trajectories

We now have to follow scrupulously the simulation procedure which was previously described. To initialize the
algorithm, we use the classical and convenient assumption16 that q1 = ϑ1 = 1, which entails that all the trajectories will
start in the active state.

Step 1 We generate a random draw from the standard uniform distribution on the closed interval [0, 1] and simulate a
first duration of sojourn in the active state using the generalized inversion (6.5);

Step 2 Given the first duration of presence in the active state t1 = t1 − t0 = y1, we update the age17 and simulate the
destination state. To achieve this, we divide the closed interval [0, 1] using the probabilities λe1 j(t1, y1)/λe1•(t1, y1),
j , e1. We then generate a new random draw from the standard uniform distribution on [0, 1] and we determine
the sub-interval of [0, 1] given by the aforementioned partition, which contains this realization. We derive the
destination state ei1 in order to simulate the duration of the second stay of our trajectory (eternity if the draw is
included in the sub-interval of death);

Step 3 If the insured becomes disabled at the date t1, we generate a new random draw from the standard uniform
distribution on [0, 1] and simulate the second duration of stay of the trajectory (in the disability state) thanks to
the inverse transform formula (6.5);

...

16an alternative choice would have been to estimate a probability to be disabled at policy issue using both the information about
incidence and severity (duration) for the representative insured defined by his initial covariates vector

17the initial age is incremented by the time spent in the active state
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6 SIMULATION OF THE THREE-STATE MODEL

Final step End of the trajectory, because of death or after the expiration of the insurance policy. Move on to the next
trajectory.

6.7 Benefit function and assumptions

6.7.1 Benefit function

We remind that the time unit considered is the day. Policies normally include a deferred period so that the benefit will
not begin to be payable until the work stoppage has lasted a certain minimum period18. As health insurance policies are
usually intended to supplement the sickness benefit available from an employer or payable from the state (e.g. National
Insurance in the UK, French Social Security System in France), the deferred period will tend to reflect the length of
time after which these benefits reduce or cease. Obviously, the longer the deferment period is, the lower the insurance
premium is.

Sometimes, cover policy conditions include a maximum benefit period. After that maximum period, other con-
ditions may specify the benefits entitlement of the insured. For the sake of simplicity, we will suppose only one set
of conditions, so that the maximum period of annuity payment depends only on the expiration date specified in the
contract.

Furthermore, we introduce a ceiling value, which caps the benefit to be paid to the policyholder when he/she has
been disabled for longer than the deferment period. This ceiling value (CV) is an increasing function of time. Indeed,
the policy conditions usually include a clause to limit the income provided by the policy, which also reduces moral
hazard.

This can also be highly desirable to introduce a maximum benefit payable from the State (BPFS). This threshold
has to be deducted from the global targeted benefit by the insurer before calculating and setting the premium level. We
suppose BPFS increases as time elapses.

Maybe above all, the size of the income benefit is generally linked to the insured’s normal level of income. At
policy issue the salary depends on the considered tariff category or covariates vector z of the representative insured
(real-valued age x, in years, at policy issue, gender, sector of activity, work area) and is therefore assigned the vector
z ≡ (w, x) as subscript, where w summarizes the information provided by the gender, the sector of activity and work area
at policy issue. Salary will also be a function of time19. We will denote by Salary the annual salary of the representative
insured.

Now let Bi,w,x(t, s) be the benefit a representative insured whose covariates vector at policy issue is (w, x) will receive
up to time t if he has been disabled at t for t − s days. Bi,w,x(t, s) depends on the date20 s ≤ t of accident or sickness
onset, given the real-valued age x at time 0 of policy issue, and on the duration of the disability spell21. Furthermore,
Bi,w,x(t, s) depends on two left-continuous functions, denoted aw,x (·) and bw,x (·), which are percentage levels. aw,x (·) is
the targeted replacement rate, provided that the salary does not exceed the ceiling value. bw,x (·) is a certain percentage
level consistent with a State-guaranteed minimum income in case of disability, on condition that the salary is not above
the maximum benefit payable from the State. aw,x (·) and bw,x (·) may depend on the risk characteristics z involved and
on the duration since the disability onset Finally, the value at time s of the payment stream up to time t is given by

18the deferred period or deferment period, usually 4, 13 or 26 weeks in the UK, on average 13 weeks in France. In the USA, the
disability income policy, often called "loss of time" or "loss of income" or "long term disability", provides payments when an insured is
unable to work because of injury or sickness. Policy designs are similar to those in the UK, altough a different nomenclature is used;
for example "(benefit) elimination" or "waiting period" are commonly used, instead of "deferred period". It is also common to include
a maximum benefit period in the event of the total disability of the insured policyholder. Benefits are normally paid monthly as fixed
payments while the insured is disabled. As in the UK, this insurance is available on both an individual and a group basis. In group
coverages the benefit amount is related directly to the insured’s earnings, at least in part. In individual coverages the relationship is
much more loose and even then only exists at time of policy issue. Benefits may be coordinated with social security, decreasing if
social security benefits are received. Policies are often on a stand-alone basis and as riders to other types of long term insurance policy;
however the second possibility is rare nowadays. For further information readers should consult Black & Skipper [3] and O’Grady
[17]

19CV, BPFS and Wage will be indexed according to a fixed rate for our application.
20or equivalently, the real-valued age at disability inception
21obviously, Bi,w,x(t, s) is equal to zero when the time spent in the disability state is lower than the deferred period of the policy, z
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6 SIMULATION OF THE THREE-STATE MODEL

Bi,w,x (s, t) =

∫ t

s
e−

∫ u
s r(h) dh

aw,x (u − s) ×
min

(
Salary(w,x)(s),CV (u)

)
365.25

− bw,x (u − s) ×
min

{
Salary(w,x) (s) ,BPFS (u)

}
365.25


× G (s,u) 1 [z ≤ u − s ≤ Ξ − (x ∗ 365.25 + s)] du

(20)
where G (s,u) is the indexing factor of the benefit for the period [s,u], aw,x (·) and bw,x (·) are such that the expression
enclosed between parentheses is non negative, z is the deferred period in days, Ξ is the maximum age (in days) at
which the insured is entitled to benefits. A more intuitive form can be obtained assuming that aw,x and bw,x are constant
and neglecting discounting and indexing problems, namely:

Bi,w,x (s, t) =

aw,x ×
min

{
Salary(w,x),CV

}
365.25

− bw,x ×
min

{
Salary(w,x),BPFS

}
365.25


×min

(
(t − s − z) ; (Ξ − (x ∗ 365.25 + s) − z)

)
1 [z ≤ t − s]

Assuming now z = 0, we have for any (s, t) ∈ R2 such that t − s ≤ Ξ − (x ∗ 365.25 + s)

Bi,w,x (s, t) =

aw,x ×
min

{
Salary(w,x),CV

}
365.25

− bw,x ×
min

{
Salary(w,x),BPFS

}
365.25

 × (t − s)

6.7.2 Assumptions about discount rate and benefits indexing

Since our model requires to evaluate future benefits cash flows, we need to model a discount-rate process v(t). From
a financial point of view, we have chosen to adopt a conventional approach, in the sense that a fixed, non-stochastic
interest rate i is considered. As a result, both the annual discount rate v = (1 + i)−1 and the instantaneous interest rate
r = ln (1 + i) will be constant. Future estimated cash flows will be discounted using this constant annual interest rate.

As far as the salary is concerned, we also need to model a revaluation process. Even if our model is fully compatible
with a stochastic revaluation process, we have also chosen a convenient constant annual indexation rate ζ.

Moreover, it seems reasonable to assume that the ceiling value CV and the maximum benefit payable from the State
BPFS are also subject to an annual review. For the sake of simplicity we have followed the classical approach of constant
annual indexation rates, denoted η and ς, respectively.

Last but not least, the benefit itself can be indexed according to an arbitrary time-varying rate. It can be relevant to
introduce this type of indexing because the reference salary to be used to compute the benefit will not generally increase
with the time spent in disability. For instance, the benefit provided by (20) depends only on the salary at disability
inception, and nothing guarantees that the benefits will be increased annually and will a fortiori keep up with inflation
as long as the disability continues. In fact, insofar as the maximum benefit payable from the State is upgraded, the
benefit from the insurer to the insured might even decrease without such an ad hoc adjustment, depending on whether
or not the salary at disability inception is lower than the (indexed) ceiling value. For the sake of simplicity, we will
assume a constant annual rate of indexing g for the numerical application.

Thus, different types of indexation are carried out annually. We emphasize that our model is flexible enough
to replace any fixed annual indexation rate by a variable rate or even a stochastic rate. Obviously, we can test any
deterministic scenario of indexation. As far as the stochastic modeling is concerned, we could, for example, carry out a
"one-factor model" such as the Vasicekmodel, or the model of Cox, Ingersoll & Ross who have built a function of the
short rate to model the zero coupon yield curve. An alternative choice might be to follow Heath, Jarrow & Morton
who suggest to use a similar approach to that being implemented by Black & Scholes with the risk-neutral pricing of
European actions, to model the zero coupon market price. Another possibility would be to apply the Markov model
of Hull & White which provides a closed-form solution to the short rate stochastic differential equation and a closed
form for the zero coupon price. We could also use the Cairns stochastic model which ensures the positivity of a Markov
homogeneous zero coupon price process.
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7 APPLICATION

7 Application

7.1 Simulations and first statistics

We now apply our simulation model to a representative man aged 25 at policy issue. We suppose he works in a large
city and in the sector "Finance & Insurance". His annual salary is set to $ 65,000. We suppose the policy expires at the
retirement date of the representative insured, which means our coverage period is 43 years from the aforementioned
policy issue, with a retirement age of 68. For our application, the benefit function which has been selected is based on a
deferment period of 13 weeks, in accordance with a usual practice for insurers. The other required values to simulate
our three-state trajectories are summarized in the table 6.

Variable Symbol Value at policy issue

Age at policy issue x 25
Expiry/Upper age limit for claiming disability allowance Ξ 68
Gender w1 M
Sector of activity w2 Finance & Insurance
Type of work area w3 Large Cities
Annual income Salaryw,x $ 65,000
Annual indexation rate (Salary) ζw,x 3 %
Annual indexing rate (Benefit) gw,x 3 %
Deferred Period z 91 days
Constant interest rate i 3 %
Targeted replacement rate aw,x 85 %
State-guaranteed replacement rate bw,x 50 %
Ceiling Value CV $ 450,000
Maximum Benefit Payable From the State BPFS $ 53,000
Annual indexing rate (CV) η 1.5 %
Annual indexing rate (BPFS) ς 2.5 %

Table 6: Parameter values.

We generate n = 100 000 trajectories for this representative agent. Each trajectory leads to a total discounted cost C
for the insurer, using the benefit function (20). We can compute the mean of these 100 000 total discounted costs to get
an estimate of the expectation of the discounted future benefits and, as a result, an estimate of the net single premium
defined by (6) over the considered coverage period.

Drawing on the approach of Stenberg, Manca & Silvestrov [24]22 in our three-state framework, we can estimate
different central moments -up to the fourth- from our trajectories. Our n simulations lead to a sample (Ci)i=1,...,n of total
discounted costs.

Figure 3 depicts the empirical distribution of the 100 000 total discounted costs we have simulated. The mass of the
distribution is concentrated on the left, and the right tail is longer: the skew is positive.

Table 7 shows empirical estimates of the expectation, standard deviation, skewness, kurtosis, 5 % VaR, 5 % ES, 0.5
% VaR, 0.5 % ES, minimum and maximum from the sample of 100 000 total discounted costs and aggregate disability
durations related to the 100 000 simulated trajectories. For a particular trajectory, an aggregate disability duration is
defined as the sum of the durations of all the sojourns in the disability state during the representative agent working life.

We note in particular that the skewness estimated from the costs distribution is greater than the skewness estimated
from the durations distribution. This discrepancy can be linked to the presence of a deferment period because benefits
are paid only when the duration of the disablement spell is greater than the deferred period of the policy.

22The authors compute the skewness, kurtosis and high-order moments thanks to closed formula
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7 APPLICATION

Figure 3: Empirical distribution of the 100 000 total discounted costs provided by the three-state model for
a representative insured aged 25 at time of policy issue, working in a large city and in the sector "Finance &
Insurance".

Variable

Statistic Aggregate Duration
of Disability Spells

Total Discounted
Cost of DI

Mean 247.2 6,582.62
St. Dev. 205.4 14,446.32
Skewness 2.22 3.79
Kurtosis 10.37 23.2
Minimum 0 0
5 % VaR 653 35,275.21
5% ES 875.1 55,959.66
0.5 % VaR 1,204.8 84708.72
0.5% ES 1,401.2 103,636.58
Maximum 2,684.3 258,342.07

Table 7: Empirical estimates from the 100 000 total discounted costs and aggregate disability durations
corresponding to the simulations for the considered representative agent. The currency unit is the dollar
(we consider its value at the beginning of the 1st year of the coverage period, i.e. at policy issue) and the
considered time-unit is the day.

7.2 Premium calculation using a modified standard deviation principle

Let us consider the positive random variable Sn =
∑n

i=1 Ci denoting the cumulative cost of all the discounted costs Ci

entailed by the claims pertaining to a representative policy, i.e. the representative insured described supra.
We evaluate the premium the insured has to pay to the insurer to be covered in case of sickness or accident, using a

modified standard deviation principle, applied to the random variable S rather than to the variable C, i.e.:

Π(S) = E [S] + ξσ(S).

The following result will be used straightforwardly to price and reserve the representative insured policy, in a
manner consistent with arbitrary solvency requirements and risk horizon:

Proposition 7.1 The aggregate net technical surplus Sn −Π (Sn) satisfies the following limit result:

Sn −Π (Sn) d
−→ N (−ξ, 1)

Proof Since the Ci are an i.i.d. sequence, we can apply the Central Limit Theorem to the aggregate claim cost Sn. Indeed,
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Pr [Sn −Π (Sn) > 0] = Pr
[ n∑

i=1

Ci −Π(Sn) > 0
]

= Pr
[ n∑

i=1

Ci − nE(C) >
√

nξσ(C)
]

= Pr
[∑n

i=1 Ci − nE(C)
√

nσ(C)
> ξ

]
−→n→∞ 1 −Φ(ξ),

where Φ(·) is the cumulative distribution function of the standard normal distribution. �

By imposing e.g. the constraint 1−Φ(ξ) = 0.005, which means that there is a 99.5% probability that the Cumulative
Cost S will not exceed the cumulated premiums Π (S), we get

ξ = Φ−1(0.995)⇐⇒ ξ ≈ 2.575.

We claim that the set of 100 000 simulations fulfills asymptotic conditions23 and the initial capital of the insurer is
equal to zero. To avoid the ruin for the whole coverage period with a 99.5% probability, replacing the mean and the
standard deviation of the random variable C by their empirical estimates, we have to price the representative policy at
the level $ 6, 700.25, including $ 117.63 of insurance loading. We observe the safety loading is very low compared to
the premium of $ 6, 700.25, which is due to the asymptotic approach: the greater n is the lower the loading is.

7.3 Simple scenario-based application to determine reserves and forecast technical
accounts

In practice, the insurer may wish to spread the payment of the premium over the coverage period. Let us suppose
the insurer wants to fix a constant annual premium Π to provide financial support in the event of the policyholder
becoming unable to work for longer than the deferred period because of disabling illness or injury. Assuming that no
waiver of premiums may be granted in the event of disability, the insurer has the following equation to solve

Loaded Single Premium =

42∑
k=0

Π

(1 + i)k

from which we obtain

Π = 271.25,

so that the constant annual premium amounts to $ 271.25. Now suppose two years have elapsed since the policy issue.
Our representative agent is 27 and earns $ 68, 958.5 a year. The ceiling value and the maximum Benefit Payable From
the State have also increased according to the indexing rules reported in the table 6. Besides, we suppose that in the
past two years, he has not been disabled with duration longer than the deferred period. We always consider that the
risk horizon to take into account to provide reserves is given by the policy expiration. Once again, we generate 100
000 simulations for this representative agent. The new net single premium amounts to $ 6, 776.54 (dollar value at the
beginning of the 3rd year of the coverage period that is equivalent to $ 6, 387.54 at time of policy issue) two years after
the policy issue. Using the formula (9), we express the reserves to establish at the end of the second year:

23i.e. the confidence interval at level α defined by In =

[
Cn − aα

√
Vn
n ,Cn + aα

√
Vn
n

]
, where Cn and Vn are the empirical estimates of

the mean and the variance of the simulated discounted aggregate benefit (table 7 ), and aα is the two-sided α-quantile of the standard
normal distribution, is considered to be small enough when α is close to 1.
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Va(2 × 365.25) = 6776.54 −
40∑

k=0

Π

1.03k

= 235.41

Given the expectation of the future cash flows from the insured (anticipated premiums) and from the obligations
towards the insured (anticipated benefits) over the 41 years to the come (time to expiration), the insurer shall establish
a reserve for this representative policy: at the end of the second coverage year, this reserve amounts to $ 235.41. Finally,
at the end of the second coverage year the insurer has collected and invested premiums, so he has got $ 567.16 (value at
the beginning of the third coverage year) from the premiums received in the first two years of the policy. The insurer
can therefore use this amount of cash to establish the required technical reserves. This leaves a margin of $ 331.75 at the
beginning of the third year of coverage. These potential margins during the life of the contract can partly be explained
by the Markov process of the disability inception process24. The results arising from the retained scenario for the first
two years of the contract are summarized in the tables 8 and 9.

Time At policy issue
y = 0

At the end of the
first year y = 1−

Two years after
issuance y = 2−

Actuarial Value of Future Outflows 6,582.62 6,677.40 6,776.54
Actuarial Value of Future Inflows 6,700.25 6,621.87 6,541.13
Reserves (117.63) 55.53 235.41

Table 8: Main Actuarial Values resulting from our simulations on the basis of the following scenario: no
waiver of premiums in case of disability, no disability lasting longer than the deferred period during the
first two years, risk horizon extended to contract expiry.

Time y = 0 y = 1− y = 2−

Assets 271.25 279.39 567.16
Reserves (117.63) 55.53 235.41
Claims paid 0 0 0
Profit 388.88 223.86 331.75

Table 9: Projected simple technical accounts on the basis of the aforementioned scenario.

Conclusion

Admittedly, the representative-agent hypothesis is a non-standard approach to assess the pricing and reserving
needs in the group insurance industry. It amounts to assuming that there is an agent whose economic behaviour is,
up to normalisation, the aggregate behaviour of the insured group. But it provides an efficient bridge to connect the
upstream econometric estimations to the downstream stochastic approaches. In addition, Multi-State Models define a
realistic and unifying framework, strongly consistent with this assumption. An outstanding advantage of these models
is their tractability and flexibility, since they are fully compatible with a specific modeling for each type of transition.
This setting is also appropriate to deal with a wide range of policy conditions and long-term coverages, and to include
competing risks in the risk assessment process, thus providing more consistent and accurate long-term premiums and
reserves. To adopt the representative insured assumption in the multistate framework is particularly convenient to
streamline risk assessment and burdensome actuarial calculations.

From the graduation of the different transition intensities, probabilities of survival within each state are expressed,
and Markov chain Monte Carlo methods can be applied. Trajectories can thus be provided for the selected representative

24disability risk does not depend on the time spent in the active state
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insured, fully described by a covariates vector at time of policy issue (e.g. gender, age, work area, sector of activity
in our case). Using additional assumptions concerning the benefit function and indexing conventions, a discounted
insurance cost (Net Single Premium) can be calculated for each trajectory from the sojourns in the disability state. This
simulation and scenario-based approach can also be used to define an appropriate reserving policy and to design a
relevant business strategy, consistent with predefined solvency requirements and a certain risk horizon, e.g. 3 to 5 years,
since we are able to project future technical accounts. This microeconomic model is entirely consistent with a sound
risk management in the sense that, all other things being equal, a change in a risk variable leads to a higher premium if
the resulting representative agent has a higher risk of becoming disabled and/or remaining disabled.

As straightforward extensions to this paper, we might investigate the best definition of an optimal representative
insured, a penalization method consistent with deviations from the rescaled limiting distribution, or the design of a
more refined approach sharing the same risk philosophy, e.g. based upon heterogeneous insured models.
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A TRANSITION INTENSITY APPROACH

Technical Annexes

A Transition Intensity Approach

Starting from the equalities

λai(x + t) = lim
4t↓0

4tpai
x+t − 0pai

x+t

4t
=
∂
∂χ χ

pai
x+t

∣∣∣∣∣
χ=0

λad(x + t) = lim
4t↓0

4tpad
x+t − 0pad

x+t

4t
=
∂
∂χ χ

pad
x+t

∣∣∣∣∣
χ=0

we get

4tpai
x+t = λai(x + t) 4t + o(4t) ≈ λai(x + t) 4t

4tpad
x+t = λad(x + t) 4t + o(4t) ≈ λad(x + t) 4t

where 4t is small enough. For any 4t > 0, the probability that at least two transitions occur in the interval [t, t + 4t] is
little-o of 4t. Finally, we have

λa•(x + t) = lim
4t↓0

4tpai
x+t + 4tpad

x+t

4t
= lim
4t↓0

1 − 4tpaa
x+t

4t
= lim
4t↓0

0paa
x+t − 4tpaa

x+t

4t
= −

∂
∂χ χ

paa
x+t

∣∣∣∣∣
χ=0

Hence,

4tpaa
x+t = 1 − λa•(x + t) 4t + o(4t) ≈ 1 − λa•(x + t) 4t

for 4t small enough.

Then, in order to express the transition probabilities from the disability state in terms of the intensities, we provide
the relations

λia(x + t, s) = lim
4t↓0

4tpia
x+t,s − 0pia

x+t,s

4t
=
∂
∂χ χ

pia
x+t,s

∣∣∣∣∣
χ=0

λid(x + t) = lim
4t↓0

4tpid
x+t − 0pid

x+t

4t
=
∂
∂χ χ

pid
x+t

∣∣∣∣∣
χ=0

which lead to the approximations

4tpia
x+t,s = λia(x + t, s) 4t + o(4t) ≈ λia(x + t, s) 4t

4tpid
x+t = λid(x + t) 4t + o(4t) ≈ λid(x + t) 4t.

where 4t is small enough.
We finally obtain

λi•(x + t, s) = lim
4t↓0

4tpia
x+t,s + 4tpid

x+t

4t
= lim
4t↓0

1 − 4tpii
x+t,s

4t
= lim
4t↓0

0pii
x+t,s − 4tpii

x+t,s

4t
= −

∂
∂χ χ

pii
x+t,s

∣∣∣∣∣
χ=0

from which we deduce, for 4t small enough:

4tpii
x+t,s = 1 − λi•(x + t, s) 4t + o(4t) ≈ 1 − λi•(x + t, s) 4t.
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C INTEGRO-DIFFERENTIAL EQUATIONS FOR TRANSITION PROBABILITIES FROM THE
MARKOV ’ACTIVE’ STATE

B Expressions from occupancy probabilities

We recall that

τpaa
x+t = Pr [Xt+τ = e1 ∩Dt+τ ≥ τ | Xt = e1].

Using Markov property, we get the equality

t+4tpaa
x = tpaa

x 4tpaa
x+t = tpaa

x

(
1 − λa•(x + t) 4t + o(4t)

)
Rearranging this expression, we find

t+4tpaa
x − tpaa

x

4t
= −λa•(x + t) tpaa

x +
o(4t)
4t

.

If 4t vers 0, we get the differential equation

∂
∂t tpaa

x = −λa•(x + t) tpaa
x

whose solution must satisfy the initial condition 0paa
x = 1. So we have

tpaa
x = exp

(
−

∫ t

0
λa•(x + τ) dτ

)
Then, recalling that

τpii
x+t,s = Pr [Xt+ε = e2 for any 0 ≤ ε ≤ τ | Xt = e2,Dt = s],

we can, as previously, obtain an expression of the probability of survival in the disability state from the instantaneous
exit rate. To achieve this, we note that

τ+4τpii
x+t,s = τpii

x+t,s 4τp
ii
x+t+τ,s+τ

= τpii
x+t,s

(
1 − λi•(x + t + τ, s + τ) 4τ + o(4τ)

)
⇐⇒

τ+4τpii
x+t,s − τpii

x+t,s

4τ
= −λi•(x + t + τ, s + τ) τpii

x+t,s +
o(4τ)
4τ

,

which provides - taking the limit - the differential equation

∂
∂τ τ

pii
x+t,s = −λi•(x + t + τ, s + τ) τpii

x+t,s

whose solution is given by

τpii
x+t,s = exp

(
−

∫ τ

0
λi•(x + t + ε, s + ε) dε

)
.

C Integro-differential equations for transition probabilities from the

Markov ’active’ state

We can also express the transition probabilities tpaa
x , tpad

x and s,tpai
x as solutions of a system of integro-differential equations.

Indeed, the following equality
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t+4tpaa
x = tpaa

x

(
1 − λa•(x + t) 4t

)
+

∫ t

0
τpaa

x λai(x + τ) t−τpii
x+τ,0 λia(x + t, τ − t) 4t dτ + o(4t)

provides, rearranging this expression and making 4t ↓ 0

∂
∂t tpaa

x = −tpaa
x λa•(x + t) +

∫ t

0
τpaa

x λai(x + τ) t−τpii
x+τ,0 λia(x + t, τ − t) dτ.

Then we express the probability t+4tpad
x − tpad

x that an insured who is active at age x will die between ages x + t and
x + t + 4t, as follows:

t+4tpad
x − tpad

x = tpaa
x λad(x + t) 4t +

∫ t

0
τpaa

x λai(x + τ) t−τpii
x+τ,0 λid(x + t, τ − t) 4t dτ + o(4t)

This provides, rearranging and making 4t ↓ 0

∂
∂t tpad

x = tpaa
x λad(x + t) +

∫ t

0
τpaa

x λai(x + τ) t−τpii
x+τ,0 λid(x + t) dτ

in accordance with the Markov property characterizing the transition process from disability to death [i.e. ∀ν > t >
0, λid(x + t, ν − t) = λid(x + t)]. Calculations required to solve the system of integro-differential equations directly may
be heavy and time-consuming. In practice, approximations have been proposed. We refer the reader to Waters [29] for
a more detailed description.

Now the probability s,tpai
x may be expressed in the same way as the previous probability by noticing that for s > t

s,tpai
x = t,tpai

x =⇒
∂
∂s s,tpai

x = 0.

Then, for s ≤ t, we can analyze the difference s+4s,tpai
x − s,tpai

x , which gives the probability of an active insured aged x
being disabled at age x + t with a disability duration between s and s + 4s:

s+4s,tpai
x − s,tpai

x = t−s−4spaa
x λai(x + t − s − 4s) spii

x+t−s,0 4s + o(4s),

The latter expression provides, rearranging terms and letting 4t going to 0,

∂
∂s s,tpai

x = t−spaa
x λai(x + t − s) spii

x+t−s,0 for s ≤ t.
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