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Abstract
The models used today for the pricing of long-term care insurance products often consider

dependency as a unique homogeneous state. As the risk carried by long-term care insurers
is not yet well-known, we think that a multi-state model, taking into account several levels
of dependency, will allow for a more accurate picture of this risk. A semi-Markov process is
a multi-state process whose probabilities of transition depend not only on the current state
but also on the time spent in this state. This process is core to numerous applications e.g.
in epidemiology but its use in relation to long-term care insurance is still very limited.

The present article aims at providing the reader with the construction process of a 4
states semi-Markov model. This work is based on data from the French long-term care
public aid: the "Allocation personnalisée d’autonomie" (APA). Firstly, we will introduce the
various parameters used to model transitions between states. We will then proceed to the
calibration of those parameters, using a likelihood maximization method, while taking into
account the peculiarities of the APA data set. Finally, we will apply the model to the pricing
of a new long-term care insurance product, using a Monte Carlo method.

Résumé
Les modèles utilisés aujourd’hui pour la tarification des contrats d’assurance dépendance

considèrent souvent la dépendance comme un état unique et homogène. A l’heure où le risque
de dépendance est encore méconnu, nous pensons qu’une modélisation multi-états, fondée sur
la prise en compte de plusieurs niveaux de dépendance, permettrait une meilleure maîtrise
de ce risque. Un processus multi-états est dit semi-markovien lorsque les probabilités de
transition du processus dépendent à la fois de l’état actuel et du temps passé dans cet état.
De tels processus ont trouvé de nombreuses applications par exemple en épidémiologie mais
leur utilisation en assurance dépendance demeure aujourd’hui très limitée.

Cet article a pour but de présenter la construction d’un modèle semi-markovien considé-
rant 4 niveaux de dépendance. Ce travail s’appuie sur des données recueillies dans le cadre
de l’Allocation personnalisée d’autonomie (APA). Tout d’abord, nous introduisons les pa-
ramètres intervenant dans notre modélisation des transitions entre les différents états du
modèle. Nous procédons alors à l’estimation de ces paramètres par la méthode du maximum
de vraisemblance, en tenant compte des spécificités liées aux données APA. Enfin, nous
proposons une application du modèle à la tarification d’un nouveau produit d’assurance
dépendance, à l’aide d’une méthode de type Monte Carlo.

Keywords: APA data, heavily censored data, long-term care insurance, maximum likeli-
hood, Monte Carlo, semi-Markov processes.
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1 Introduction

1.1 High stakes

In developed countries, since the beginning of the 20th century, there has been a steady increase
in life expectancy of around one quarter every year. This, along with the aging of the baby-
boomer generations has resulted in the expectation that the number of people aged of 65 or
more will double by 2060 (see Blanpain and Chardon, 2010). Among other consequences, this
will drastically increase the number of dependent elderly people.

The first long-term care insurance products appeared in the 1980s, which is very late compared
to other types of insurance, and presented a maximum age of subscription. As a result, the
amount of data available to insurers is still very limited, especially for higher ages, and so is the
knowledge insurers have of the underlying risk. Under the above circumstances, more complex
models for the dependency process need to be developed.

1.2 About current models

Most insurers nowadays use discrete models with 3 states: autonomy, dependency and death.
Figure 1 shows an example of such a model.

Three different laws are used in this model:
• i(s) is the dependency incidence rate. It is a discrete annual law that only depends on age.

Empirical data shows that incidence rate increase exponentially with respect to the age s
of the subject.

• qa(s) is the mortality rate for autonomous people.
• qd(s, x) is the mortality rate for dependent people. It depends not only on the age s of

entry in dependency, but also on the time x spent in the dependency state.

Figure 1: A simple model with 3 states: autonomy, dependency and death.

Models such as the one previously introduced are simple and reliable. However they only
consider a single level of dependency. Nowadays, most long-term care insurance products offer
two levels of guarantee with regard to the seriousness of the dependency state: partial or total
dependency. To price such products, and because of the lack of available data, insurers often
combine two separate models, one for partial dependency and the other for total dependency. In
doing so, they make the approximation that the incidence rate toward total dependency is the
same for both autonomous and partially dependent people. This leads to a simplistic view of
the risk which results in less visible long-term trends for mortality and incidence rates.
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1.3 Toward a new model
In this article, we will consider a model with 4 different states of dependency. To define these
states we will rely on the "Autonomie, gérontologique, groupes iso-ressources" (AGGIR) grid.
The AGGIR grid aims to categorize people by groups of similar needs based on dependency and
is used in France for the attribution of the public aid for dependent elderly people, the APA,
created in 2002. This grid describes 6 levels of dependency, from the more severe level GIR
1, which corresponds to people who are confined to bed or to a wheelchair and have lost their
mental faculties, to GIR 6 which corresponds to nearly autonomous people. To determine to
which group one belongs, the ability to perform activities of daily living is assessed, and these
abilities are then weighted and factored into a complex algorithm (see Vetel et al., 1998). Only
people in states GIR 1 to GIR 4 can benefit from the public aid, and we will only consider these
levels as dependency in our model. The choice of an AGGIR-based definition is key, as it allows
us to use data from the APA, that is gathered on the whole population and proves to be richer
than most insurer’s portfolio experience.

In our model, as for the mortality rate in dependency in the previous model, we will consider
transition laws originating from dependency states as functions of both the age and the time
spent in the current dependency state. As we will also work with a continuous time scale, such
a model is called a multi-state semi-Markov model (see Cinlar, 1969; Janssen and Manca, 2002).
Semi-Markov processes have been widely and successfully used in the field of epidemiology, to
model for example the HIV disease, as in Mathieu, 2006. Although their use to model the
dependency process may seem very natural under those circumstances, as far as we know, it has
only be done in Lepez, 2006, the main reason for this being the lack of available data.

Finally, we will consider in our model that there is no return to a better health status, for
several reasons:

• According to the French definition, dependency is a consolidated and irreversible state.
• From an insurer point of view, it is prudent to assume that an insured life with an im-

provement in his/her health status may not declare it. Also, performing regular checks for
such improvements would prove far too expensive.

• From a model point of view, considering returns would result in doubling the number of
transitions, and therefore raises computation time and parameter identification issues.

Figure 2: The new model with 6 states: autonomy, 4 levels of dependency, and death. A definition
of the semi-Markov kernel Qi,j(s, x) where i > j, 0 ≤ s, x, is provided in the following section.
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Figure 2 shows a representation of the new model, where some elements are the same as
for the previous 3-states model. Indeed, we will continue to use the same mortality rate for
autonomous people qa(s), and the same incidence rate i(s) though we will need to complement
the latter by adding a multidimensional function R(s), which will give the probabilities, knowing
the age s of entry, for dependency to begin in each state.

Figure 3: The semi-Markov sub-model with only transitions originating from dependency states.

In the following section, we will focus on the construction of the semi-Markov sub-model
composed of transitions originating from dependency states. Figure 3 shows a representation of
this sub-model, which has 5 states and 10 transitions.

2 Description of the new model

2.1 Elements of semi-Markov theory
Definition. Let X = (Xt)t≥0 be a continuous time process which takes its value in a finite set
of states E and (Ft)t≥0 be the filtration associated to X. For each time t ≥ 0, we denote by Nt
the number of transitions made by X between 0 and t, and by τNt the time of the Nt transition
(with τ0 = 0). X is called a semi-Markov process if:

∀n ∈ N, ∀x > 0, ∀j ∈ E, P (τn+1− τn ≤ x,Xτn+1 = j|Fτn) = P (τn+1− τn ≤ x,Xτn+1 = j|Xτn).

In other words, at times of transition, the future of the process is only determined by its
current state. Information about the past of the process is irrelevant.

With the same notations, if X is a semi-Markov process, the following property is verified:

∀j ∈ E, ∀ 0 ≤ s ≤ t, P (Xt = j|Fs) = P (Xt = j|Xs, s− τNs).

In other words, the future of the process is only determined by its current state and the
time spent in that state. Markov processes are often described as processes with no memory. In
comparison, semi-Markov processes do have a memory, although this memory is reset every time
the process enters a new state.

Definition. The semi-Markov kernel is defined by:

∀i, j ∈ E, ∀ 0 ≤ s, x, Qi,j(s, x) = P (XNs+1 = j, τNs+1 ≤ s+ x|XNs = i, τNs = s) .
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A semi-Markov process is entirely determined by its semi-Markov kernel, which makes the
latter a key element in our modeling process.

Definition. The jump process associated with a semi-Markov process is a Markov chain defined
by:

• The same set of states as the original semi-Markov process.
• Probabilities of transition given by:

∀i, j ∈ E, ∀ s ≥ 0, pi,j(s) = lim
x→+∞

Qi,j(s, x)

= P (XNs+1 = j|XNs = i, τNs = s) .

Definition. The duration law of a semi-Markov process, given its semi-Markov kernel, is defined
by:

∀i, j ∈ E,∀ s ≥ 0, Fi,j(s, x) = P (τNs+1 ≤ s+ x|XNs = i,XNs+1 = j, τNs = s)

=


Qi,j(s, x)
pi,j(s)

if pi,j(s) > 0,

0 otherwise.

We have the fundamental relation: Qi,j(s, x) = pi,j(s)×Fi,j(s, x). It gives us a way to break
down the modeling process into two subsequent simpler processes. We first pick a satisfying
model for the jump probabilities pi,j(s). For each couple (i, j) with i > j we then fit a model to
the duration law for the transition from state i to state j.

The strength of this approach lies in the fact that both the jump probabilities and the duration
laws can easily be interpreted. Furthermore this immediately translates into an algorithm to
simulate trajectories. Firstly, we determine the next state using jump probabilities, then knowing
this next state we determine the time until transition using the associated transition law. We
continue to iterate these two steps until the current state becomes death.

2.2 Jump probabilities
Our first step is to find a parametric expression for the jump probabilities, which only depends
on the age s. The right approach would be to first calibrate a non-parametric model for jump
probabilities. Nevertheless, as our data is heavily censored, the results obtained this way cannot
be trusted. Hence, we have decided to choose a linear model. This decision is based on Lepez,
2006 whose author fitted both a logistic and a linear model to the APA data and obtained results
too close to justify using everything but the linear model.

∀i 6= j ∈ E, ∀ 0 ≤ s, pi,j(s) = ai,j × s + bi,j .

As pi,j(s) are the terms of a stochastic matrix, we have the following constraints:

∀i ∈ E, ∀ 0 ≤ s,
∑
j 6=i

pi,j(s) = 1⇐⇒


∑
j 6=i

ai,j = 0.∑
j 6=i

bi,j = 1.

∀i 6= j ∈ E, 0 ≤ pi,j(s) ≤ 1.

We consider 10 transitions so we should have 10 parameters for ai,j and 10 for bi,j . However,
as (pi,j)0≤i,j≤4 is a stochastic matrix, the equality constraints associated force the value of one
parameter in each line of the matrix. Thus we will only consider 10− 4 = 6 parameters of each
type and express the probabilities in the last column of the matrix using those parameters.
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2.3 Duration laws
We will use Weibull law as a base component for our model. Weibull law is a generalization of
the exponential law. It uses the same scale parameter σ > 0 but also a shape parameter ν ≥ 1.
Weibull laws play a key role in reliability theory (see Murthy et al., 2004; Zhang et al., 2006) and
are often used to model human survival laws. Besides, dependency is a very heterogeneous state,
as it can be caused by a wide range of illnesses. On one hand cancers and cardiovascular diseases
are usually associated with short survival time. On the other hand, muscular and skeletal diseases
as well as dementia, Alzeihmer and Parkinson diseases generally lead to longer survival time.
To capture this effect, and still in accordance with the reliability theory (see Bucar et al., 2004;
Jiang and Murthy, 1997), we decide to use a mixture of two Weibull laws for each transition,
with a constant mixture parameter λ ∈ ]0 ; 1[. Lastly, we want the age s of entry to play a role in
duration laws, as people offer less resistance to diseases the older they become, which translates
into shorter survival times. To take this effect into account, we propose to use xeβs instead of x
as the argument of the Weibull cumulative distribution function, where β ∈ R will be called the
time dependency parameter.

Finally our duration law is defined by the following cumulative distribution function:

F (s, x) = (1− λ)W1(s, x) + λW2(s, x)

where, for i ∈ {1; 2}, Wi(s, x) = 1− e−(σixeβis)νi .

Parameter summary
Finally, our model uses 82 parameters. A summary is provided in table 1.

parameter count definition interval description
a 6 a ∈ R slope of jump process
b 6 b ∈ R intercept of jump process
ν 20 ν ≥ 1 shape parameter of Weibull law
σ 20 σ > 0 scale parameter of Weibull law
β 20 β ∈ R time dependency parameter
λ 10 0 < λ < 1 mixture parameter

Table 1: Summary of the different parameters used in the model.

3 APA data

3.1 Introducing the data
The data at our disposal has been gathered in four French administrative areas over the years
2002 to 2005 included. Every individual living in one of those areas that has been granted this
aid at least once between 2002 and 2006 should therefore be included in this database.

Figure 4 shows an extract of the processed data base, after we harmonized variable format
over the different administrative area’s databases and removed the individuals with obvious errors
in individual dates or chronology. The data contains the following information about individuals:

• The date of birth. As we only have the month and year of birth, the day of birth has been
arbitrarily set to 15 for each individual.

• The date of up to 5 evaluations of the individual’s dependency state using the AGGIR grid
and the result of those evaluations.
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• The date of death when death occurs during the observation period. As we can see in
figure 5b, death is only observed starting from 2005.

• Other variables such as administrative area of residence, sex and matrimonial status that
we will not be using here.

Figure 4: Extract of the processed APA data.

We note that the first four dates of evaluation correspond to the first four dates of evaluations
of the beneficiary in the period when the last date of evaluation is the last known date of
evaluation. It means that if the beneficiary has undergone less than four evaluations, we will
have his/her full trajectory, while if the beneficiary has passed 5 or more, we will only have the
first four dates and the last date, but we will not even know if there is any evaluation in-between.
Such trajectories are fortunately not very frequent (they represent around 1 % of the database)
and can be safely discarded, without significantly altering the data. Once processed, the database
contains information about 53,599 individuals.

3.2 Observations on the data
First of all, we note that in the place of dates of transitions, we only have dates of evaluation.
However, as those evaluations are freely available and at any time, we will make the assump-
tion that each change in the dependency status of an individual is immediately followed by an
evaluation. Hence, we can consider that every transition that happened during the observation
period is in our database.

Figure 5a represents the distribution of observed first date of evaluation. We can observe
a peak during the first year of observation. This is because 2002 is the year the APA was
introduced. Thus we have a bias because of people who have been dependent for some time
but whose dependency statuses were not assessed prior to the introduction of the APA. This
phenomenon is called the "stock effect". To solve this problem we need to remove individuals
whose first evaluation have taken place before 2003 from the base. They represent around one
third of the database and we have 34,551 individuals left after this step.

As we follow individuals over a few years, many trajectories are incomplete at the end of the
observation period. Those trajectories are right censored, and we need to account for this when
we perform the calibration of parameters.

Figure 5b represents the distribution of observed death. We can see that there are hardly
any observations during the first 3 years because, before 2005, no information was gathered on
death of beneficiaries. Therefore, we can distinguish two situations for individuals whose death
was not observed:

• The last evaluation happened after the 1st of January 2005. In this case, if the individual
was dead, we would have known it. Therefore there is no missing information.

• There has not been any evaluation since the 1st of January 2005. In this case there may
be some missing information about the death of the individual.
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When death of the individual occurred before 2005, we do not know precisely when it happened
between the last observed evaluation and the 1st of January 2005. This phenomenon is referred
to as interval censoring. In our case however, things are even worse as we do not even know if
death occurred at all. The next section will provide a way to take into account this peculiarity
of the data.
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Figure 5: Observed events on the data.

4 Calibration
To calibrate the parameters, we use a maximum likelihood method.

4.1 Likelihood function
The first step is to express the likelihood function. The global likelihood is the product of all
individual likelihoods:

L =
N∏
p=0

Lp

where N is the number of individual in the observation base, N = 34,551 for our data.
The trajectory of each individual p is defined using:
• The number of observed transitions: np.
• The set of visited states: Xp = (Xp

k)1≤k≤np .
• The set of transition times: tp = (tpk)1≤k≤np and the times τpk = tpk − t

p
k−1 between transi-

tions for 1 ≤ k ≤ Np where tp0 is the birth date of the individual.
• A couple (δp1 , δ

p
2) indicating if the trajectory is right censored or interval censored. If T p1 is

the age of the individual at the beginning of the death observation period (1st of January
2005) and T p2 the end of the observation period (31st of December 2005), we can write:

(δp1 , δ
p
2) =

(
I[Xnp 6= 0, T p1 ≤ tnp < T p2 ], I[Xnp 6= 0, tnp < T p1 ]

)
where I(A) represents the indicator function associated with the subset A.
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The global likelihood has the following expression:

L =
N∏
p=1


(
np−1∏
k=1

cXp
k
,Xp
k+1

(tpk, τ
p
k+1)

)
︸ ︷︷ ︸

observed transitions

× c1
Xpnp

(tpnp , T
p
2 )δ

p
1︸ ︷︷ ︸

right censoring

× c2
Xpnp

(tpnp , T
p
1 , T

p
2 )δ

p
2︸ ︷︷ ︸

interval censoring


where cXp

k
,Xp
k+1

(tpk, τ
p
k+1) is the term associated with an observed transition, c1

Xpnp
(tpnp , T

p
2 ) and

c2
Xpnp

(tpnp , T
p
1 , T

p
2 ) are terms which take into account right censoring and interval censoring respec-

tively. In practice, we use the log-likelihood to convert products into sums. The log-likelihood
function can thus be expressed as the sum of 40,315 terms which takes into account the infor-
mation we have on the remaining 34,551 individuals.

Observed transitions

The contribution associated with an observed transition has the following expression:

cXp
k
,Xp
k+1

(tpk, τ
p
k+1) = pXp

k
,Xp
k+1

(tpk)× fXp
k
,Xp
k+1

(tpk, τ
p
k+1).

Right censoring

The trajectory of an individual is right censored when his/her last evaluation has taken place
in 2005 and when death has not been observed. Under this hypothesis, the individual is alive
at the end of 2005. Therefore, we need to take this information into account by adding another
term into the likelihood function:

c1
Xpnp

(tpnp , T
p
2 ) = SXpnp (tpnp , T

p
2 − tpnp)

=
∑

j<Xpnp

pXp
k
,j(t

p
k)× SXpnp ,j(t

p
np , T

p
2 − tpnp)

= 1−
∑

j<Xpnp

pXp
k
,j(t

p
k)× FXp

k
,j(t

p
k, T

p
2 − tpnp).

where, for s, x ≥ 0 and i 6= j:

• Si,j(s, x) = 1 − Fi,j(s, x) is the survival function associated with the transition between i
and j.

• Si(s, x) =
∑
j<i

pi,j(s)× Si,j(s, x) is the marginal survival function in state i.

Interval censoring

The trajectory of an individual is interval censored when his/her last evaluation has taken place
before 2005 and when death has not been observed. Such individuals belong to one of the two
following categories:

• Those who died between their last evaluation and the 1st of January 2005. In this case we
also know that their status has not changed before death or it would have been observed.

• Those who are still alive at the 1st of January 2005. In this case we know that they did
not die either during the year 2005 or it would have been observed, and that their status
did not change at all during the remaining of the period.
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To take this information into account we need to add another factor to the likelihood function,
that precisely reflects the fact that the observed individual belongs to one of the two aforemen-
tioned groups:

c2
Xpnp

(tpnp , T
p
1 , T

p
2 ) = pXpnp ,0(tpnp)× FXpnp ,0(tpnp , T

p
1 − tpnp) + SXpnp (tpnp , T

p
2 − tpnp)

= pXpnp ,0(tpnp)× FXpnp ,0(tpnp , T
p
1 − tpnp) +

∑
j<Xpnp

pXp
k
,j(t

p
k)× FXp

k
,j(t

p
k, T

p
2 − tpnp).

where, for s, x ≥ 0 and i 6= j: , Si(s, x) is the marginal survival function in state i as
previously introduced.

4.2 Optimization
The optimization of a 40,315 term function with respect to 82 parameters should not be taken
lightly.

Algorithm used

To solve this optimization problem, we need an algorithm that does not require an expression for
the gradient of our likelihood function. Under those circumstances, the Nelder-Mead algorithm
(see Nelder and Mead, 1965; Mathews and Fink, 2004) seems perfectly suited. This algorithm is
conveniently implemented in the function constrOptim(), which allows for linearly constrained
optimization in R . The Nelder-Mead algorithm is a heuristic which builds a simplex in the
solution space and calculates the value of the optimization function at the vertexes. Then,
depending on the results, the algorithm applies geometric transformations to the simplex in
order to explore the most promising parts of the solution space. After many iterations, this
heuristic should converge toward the global maximum of the function.

Log-likelihood subdivision

We observe that in the log-likelihood function, each term contains only parameters associated
with the same departing state. Hence we can gather these terms according to their departing
state, and write the log-likelihood function as a sum of 4 sub-functions, each one of them con-
taining different parameters. It means that for solving the optimization problem, we can just
solve those 4 sub-problems separately. Using this method, we are able to cut the computation
time required by a factor of 4.

Data aggregation

Another way to reduce the algorithmic complexity of our problem is to aggregate data. The idea
is that many observations are very similar, and instead of calculating the likelihood associated
with all of them, we can aggregate them and calculate a likelihood function with weighted factors.

We decide that the observations meeting the following criteria should be put together:
• Same departing state and same arriving state (or type of censure for censoring terms).
• Age s of entry in the departing state in the same range of 2 years.
• Time x spent before transition (or before censoring) in the same range of 1 month.
For each group, we replace the observations by a single observation, whose age of entry s and

time spent before transition x are the mean of the replaced observations’, with a weight equal to
the number of replaced observations it represents. Figure 6 illustrates the aggregation the effect
of the aggregation for two different data sets. Using this method, the number of terms in the
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Figure 6: Illustration of data aggregation.

log-likelihood function drops from 40,135 to 6,492, further cutting required computation time by
a factor of 6.

Thanks to both methods, we are able to reduce computation time to the point where cal-
ibration of the model becomes possible on an office computer and in a reasonable amount of
time.

4.3 Model selection
Now that we are able to calibrate models, we have to determine, using the APA data, which
parameters are necessary and which ones are not.

Selection criterion

To compare two different models, one of them being a sub-model of the other, we will use the
Bayesian Information Criterion (BIC) (see Lebarbier and Mary-Huard, 2006, for a review of the
BIC.). This criterion gives a score to each model i, using the following formula:

BICi = −2 li(θ̂i) +Ki ln(N)

where:
• Ki is the number of parameters of the model.
• li is the log-likelihood function.
• θ̂i is the set of parameters that maximizes the log-likelihood function.
• N is the number of observations. It does not depend on the model used.
Then, according to this criterion, the model with the lower associated BIC value should be

preferred over the others. When we take a closer look at the formula, we see that this criterion
proposes a valuation of the trade-off between the accuracy of the fitting (represented by the
log-likelihood function) and the explanatory power of each parameter (which is lower the more
parameters there are in the model). These two factors have the associated weights - 2 and ln(N)
respectively. For our database, we have N = 34,551 and thus ln(N) ' 10.
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Comparison of base models

In a first part we are going to compare models using survival laws of increasing complexity, as
described previously. Results of calibration are summarized in table 2. Weibull laws with a time
dependency parameter will be referred to as improved Weibull laws. According to the BIC, the
last model, which uses a mixture of improved Weibull laws and includes 82 parameters, is the
best model. In the next subsection, we will try to improve this model by removing non-essential
parameters.

Duration laws model Parameters Log-likelihood BIC Calculation time
Simple Weibull laws 32 - 36,347 73,028 36 min

Mixture of simple Weibull laws 62 - 36,120 72 888 4.6 h
Improved Weibull laws 42 - 36,173 72,785 1.3 h

Mixture of improved Weibull laws 82 - 35,938 72,733 6.4 h

Table 2: Comparison of base models. Calculation times applies to an office computer with a 2.93
GHz dual core processor.

4.4 Suppression of non-significant parameters
Because of the high calculation time needed for calibration, we will not be able to use standard
step-wise methods where at every step, we test every sub-model obtained by removing one of
the parameters, and pick the model which gets the best BIC. Instead, we will have to remove
several parameters at once, based on graphical observations or empirical criteria, and compare
the BIC of the resulting model to the one of the original model. With this method, we improve
our model at each step but with no guarantee of having the best model at the end, but this may
also be said of step-wise methods. We will consider 3 successive waves of parameters removal.

Significance of mixture parameters
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Figure 7: Mixture parameters. Bold line: duration law for an age of entry of 80, with its two
components in red and blue. Dotted (resp. dashed) line: duration laws for an age of entry of 60
(resp. 100).
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Firstly, we can observe that the use of mixtures is not always justified. Figure 7 represents 2
duration laws after calibration, for the model with mixtures of improved Weibull laws. In figure
7a, the duration law is clearly bi-modal, which justifies the use of mixtures, while in figure 7b
the second mode can hardly be seen. The results of the calibration show that for transitions
with death as the arrival state, a mixture is always needed. Transitions from GIR 4 to a heavy
dependency state (GIR 2 or GIR 1) also require a mixture. For other transitions, an improved
Weibull law is enough. In this first step, we will thus test the effect of the removal of 4 mixtures
(for transitions GIR 4 to GIR 3, GIR 3 to GIR 2, GIR 2 to GIR 1 and GIR 2 to GIR 1), for a
total of 16 parameters removed (4 mixture parameters and 3× 4 parameters which were used in
the second component of the mixture).

Significance of time dependency parameters

We also observe that improved Weibull laws are not always needed. To determine in which cases
we can suppress the time dependency parameters, we will use the following empirical criterion:

βi,j is considered to be significant when |e100βi,j − e60βi,j | < 0.25.
This means that the transition takes on average at least 25 % less time (or 25 % more time)

for people aged 100 than for people aged 60. If a parameter does not meet this criterion, we can
regard the impact of the time dependency factor as not strong enough to appear in the model.
Two parameters, β1

3,0 and β2
1,0, do not meet the criterion and are removed from the model. Figure

8 shows two duration laws: 8b is an example of significant time dependency parameters, while
8a has a very low time dependency on its second component.
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(b) Transition between GIR 1 and death

Figure 8: Time dependency parameters. Same legend as for figure 7.

Significance of slope parameter

In this last step, we will focus on the slope parameters of the models. We will also use an
empirical criterion:

ai,j is considered to be significant when |(100− 60)ai,j | < 0.01.
It means that more than 1 % of the distribution of possible next states changes between 60

and 100 years. If a parameter does not meet this criterion, it does not have a significant impact
on the probability distribution and can be suppressed. Two parameters a4,1 and a3,2 do not meet
the criterion and are removed from the model. Figure 9 shows the jump probabilities from GIR
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3. The slope parameter for the transition from GIR 3 to GIR 2 is not significant, while the two
other parameters are significant.
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Figure 9: Slope parameters.

Results of previous steps

Table 3 gives the impact of the previously described steps on the model. We can see that each
successive wave of removal contributes towards improving our model. From now on, we will
only consider the model obtained after applying the three waves of removals, which contains 62
parameters. The expression of jump probabilities and duration laws used in this model and the
value of these parameters obtained after calibration are given in Appendix B.

Duration laws model Parameters Log-likelihood BIC
Complete model 82 - 35,938 72,733

including removal of mixtures 66 - 35,940 72,570
also including removal of time dependency parameters 64 - 35,941 72,551

also including removal of slope parameters 62 - 35,942 72,532

Table 3: Removal of non-significant parameters results.

5 Complete model
In the previous sections, we introduced and calibrated a model for the trajectory of individuals
once they become dependent. In this section we will bring together the last elements required
to generate complete trajectories.

5.1 Additional elements
To get a complete model as described in figure 2, we are still missing a few items:

• i(s): the probability to become dependent.
• qa(s): the probability for autonomous people to die.
• R(s): the distribution of probabilities to enter the different states of dependency, knowing

the age of entry.
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For the first two items, we are going to use experience laws graciously provided by SCOR.
We will also introduce the following quantities:

• pi(s, x) the probability at age s to become dependent at age s+ x.
• pq(s, x) the probability at age s to die at age s+ x without becoming dependent.
• pi(s) the probability at age s to become dependent before dying.
• pq(s) the probability at age s to die without becoming dependent.
• fi(s, x) the probability at age s knowing one will become dependent before dying that the

entry in dependency occurs at age s+ x.
• fq(s, x) the probability at age s knowing one will die without becoming dependent that the

death occurs at age s+ x.
These quantities can be expressed using i and qa:

pi(s, x) =
(
s+x−1∏
k=s

(1− i(k))(1− qa(k))
)
i(s+ x), pi(s) =

∞∑
x=0

pi(s, x), fi(s, x) = pi(s, x)
pi(s)

pq(s, x) =
(
s+x−1∏
k=s

(1− i(k))(1− qa(k))
)
qa(s+ x), pq(s) =

∞∑
x=0

pq(s, x), fq(s, x) = pq(s, x)
pq(s)

.

While these quantities may seem redundant with the incidence and mortality rates, they
present a real interest from an algorithmic point of view, as we will see in the following subsection.
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Figure 10: Distribution of entry states with regard to age of entry.

For the distribution R(s), we will once again use the APA data. We have N = 34,551
observations of entry into dependency. For each age between 60 and 100 years, we count the
number of individuals that became dependent and entered each state at that age. Then, we
fit a parametric model to this distribution. Given the available data, a linear model seems
quite appropriate. As the sum of fitted probabilities will not be exactly equal to 1, we have to
normalize it so the laws are not exact linear functions, but are still extremely close. As little data
is available for ages under 60 or over 100, we assume constant probabilities outside the interval.
Figure 10 shows the empirical observation as well as the fitted distribution.
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5.2 Simulation of trajectories
We denote by s0 the age of subscription. This is the age at which the trajectories begin.

The trajectory of the individual p that we are trying to simulate is defined by:
• The number of visited states: np.
• The set of visited states: Xp = (Xp

k)0≤k≤np .
• The set of transition times: tp = (tpk)0≤k≤np .
The possible states are {0, 1, 2, 3, 4, 5} where 5 represents the autonomy state, 0 is death and

states 1 to 4 correspond to states GIR 1 to GIR 4.

To simulate the trajectory of an individual p, we use the following algorithm:
1. We set Xp

1 = 5, and tp1 = s0. The underlying hypothesis is that all individuals are au-
tonomous at subscription, which is the case for individual contracts, where medical under-
writing is always performed.

2. We draw a variable r1 uniformly distributed on [0 ; 1] and we test it against pi(s0). If
r1 > pi(s0), the individual will die without becoming dependent. We set Xp

2 = 0 and go
to step 3. Otherwise the individual will become dependent and we can go to step 4.

3. We draw a random discrete variable x distributed according to the probabilities fq(s0, x),
which allows us to determine the age of death s + x, to which we need to add a random
variable r2 uniformly distributed on [0 ; 1] as the fractional part of the year. We thus set
tp2 = s0 + x + r2. The trajectory ends with the death of the individual and the algorithm
stops, with np = 2.

4. We draw a random discrete variable distributed according to the probabilities fi(s0, x) to
determine the age of entry in dependency s+x, to which we need to add a random variable
r2 uniformly distributed on [0 ; 1]. We also set tp2 = s0 + x+ r2.

5. We draw a random discrete variable distributed according to R(s0 + x) to determine the
state of entry in dependency Xp

2 .
6. We set k = 2.

While the individual is alive, i. e. Xp
k 6= 0 we do the following:

• We draw a random discrete variable distributed according to pXp
k
,j(t

p
2) for all j ∈

{0, . . . , Xp
k − 1} to determine what the next state Xp

k+1 will be.
Then:
– If FXp

k
,Xp
k+1

is a simple duration law (i. e. λXp
k
,Xp
k+1

= 0), the time Xp
k spent in

the current state before transition follow is distributed according to the law:

Y = e−βs

σ

[
ln
(

1
1− U

)] 1
ν

where U is a random variable uniformly distributed on [0 ; 1]. For clarity’s sake,
we omitted the index in this formula. They would be Xp

k and Xp
k+1. Hence we

simulate u uniformly distributed on [0 ; 1] and we get y the time spent in state
Xp
k , which gives us tpk+1 = tpk + y.

– If FXp
k
,Xp
k+1

is a mixture, we draw a uniformly distributed variable r3 on [0 ; 1]
and we test it against λXp

k
,Xp
k+1

: if r3 < λXp
k
,Xp
k+1

, we pick the first component
of the mixture, otherwise the second. Then with this single component, we can
proceed as previously described, and get tpk+1.

• We increment k and go back to the beginning of step 6.
7. The trajectory ends with the death of the individual and the algorithm stops with np = k.
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With discrete probabilities laws fi(s0, x) and fq(s0, x), we only need to draw 2 random
variables to determine if the individual becomes dependent during his/her life or not and when
he/she becomes dependent or dies. With incidence and mortality rates, for an age of subscription
of 50 years, it takes on average more than 30 years before death or dependency occurs. We
therefore need to perform 60 random variable draws just for this first step of the algorithm. This
process allows us to cut the overall computation time by a factor of 10, and 10,000 trajectories
can then be simulated by our algorithm in less than 3 seconds on an office computer.

5.3 Statistical information on simulated trajectories
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Once we are able to generate trajectories, we can try to gather some statistical information
about these trajectories:

• Life expectancy at 50 years is 34.8 years. It is slightly more than life expectancy of the
general population, which is due to the fact that we used mortality rates from insurer
portfolios experience, that are lower than those of the the general population.

• 57.1 % of people become dependent, and survive for an average time spent in this state of
2.55 years.

• The average age of entry in dependency is 85.9 years, which is close to what is observed on
the APA data.

All these indicators are calculated based on one million simulations, with an age of subscrip-
tion of 50 years. Figure 11a represents the structure of the population every year. Dependent
people account for 5 % of the population only at 80 years, 20 % at 90 years and more than
70 % at 100 years. Figure 11b represents the number of dependent people every year for a
base population of one million 50 year old subscribers. The maximum number of dependents is
reached at age 91. Figure 11c represents the distribution of survival time in dependency. The
green dashed line corresponds to the mean of the distribution at 2.55 years. The red dashed line
corresponds to the 95 % percentile at 6.12 years. Finally, figure 11d shows the average survival
time in dependency, given the age of entry. This survival time decreases almost linearly, from
4.2 years at age 50 to less than 1.9 years at age 100.

6 Pricing and results

In this part we are going to introduce a fictive long-term care insurance product and use our
model to price it.

6.1 Product description

For this premium, the dependency is evaluated using the AGGIR grid. Only states GIR 1 to
GIR 4 will be considered as dependency. A level premium will be paid by the insured life, at the
beginning of every month, while he is alive and autonomous. If the insured life is alive and depen-
dent at the end of the month, the premium no longer needs to be paid, and a monthly allowance
is granted instead. The amount of this allowance is determined by the state of dependency:

• GIR 1: 1,300 €.
• GIR 2: 1,100 €.
• GIR 3: 800 €.
• GIR 4: 0 €.

An additional cash amount of 1 650 € is also granted alongside the first allowance, regardless
of the dependency state. The contract also includes a deferral period of 3 months. No payment
is made during the first three months spent in dependency. The additional cash amount is thus
paid at the end of the fourth month in dependency, should the insured life still be alive at this
time. An elimination period of 2 years is also added to the contract. It means that, should the
insured life become dependent during the first two years after subscribing, the contract would be
canceled. Finally, counter-insurance is also provided so that if the contract ends during the first
two years because the insured life becomes dependent or dies, all premium paid are refunded to
the insured life or his/her heirs.

Finally, a technical interest rate of 1.25 % will be set by the contract.
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6.2 Pricing methodology

Premium determination

In most insurance models, the pricing is done directly using a closed formula, where the premium
can be expressed according to different laws using simple or double sums. In the case of multi-
state continuous models however, we would have to calculate multiple integrals, with absolutely
no guarantee of finding an analytic function at the end. Therefore we will have to proceed
otherwise.

The required premium is the amount that makes the expected payments for the insurer and
the insured life equal. Both expected values are assessed using the Net Present Value (NPV).
The required premium is the value p∗ such that:

p∗ × E (NPV(P )) = E (NPV(B)) ,

where B represents the benefit cash flows and P represents the premium unit cash flows.
To find the value of the premium p∗, we use a Monte Carlo algorithm:
• We generate a large number n of trajectories with an age of subscription of s0.
• For each trajectory, we compute the NPV of the benefit cash flows B and the NPV of unit

premium cash flows P .
• We use the following formula to determine an estimate of the premium amount:

p̂n =

1
n

n∑
i=1

NPV(Bi)

1
n

n∑
i=1

NPV(Pi)

where Bi (respectively Pi) represents the series of benefit cash flows (respectively unit pre-
mium cash flows) associated with the trajectory i. According to the law of large numbers,
this is an unbiased estimator of p∗, i.e. p̂n →

n→+∞
p∗ almost surely.

Uncertainty on premium estimation

The study of the law followed by the ratio of two normal variables has led to numerous results
(Bastien, 1960; Marsaglia, 2006), with optimal bounds that depends on the correlation between
those variables. However, in our case the empirical correlation coefficient between premiums and
benefits is very low, only close to 5% and we resort to a much simpler approach.

Let us denote by µ̂B(n), µ̂P (n), σ̂B(n) and σ̂P (n) the estimators of empirical mean and
empirical variance of NPV(B) and NPV(P ) respectively, for α ∈ ]0 ; 1[, according to the central
limit theorem, we have:

|µB − µ̂B(n)| <
σ̂B(n)Φ−1(1− α

2 )
√
n

|µP − µ̂P (n)| <
σ̂P (n)Φ−1(1− α

2 )
√
n

with a level of confidence of 1−α, where Φ is the cumulative distribution function of the standard
normal law.

We want to upper-bound |p∗ − p̂n| = |
µB
µP
− µ̂B(n)
µ̂P (n) |.
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Lemma. Let x ≥ 0 and y > 0. If (xn)n∈N, (yn)n∈N, (an)n∈N, (bn)n∈N are four sequences such
that: {

xn →
n→+∞

x

yn →
n→+∞

y

{
an →

n→+∞
0

bn →
n→+∞

0

 |xn − x| < an

|yn − y| < bn

Then for all ε > 0, there is n0 ∈ N such that, for all n ≥ n0:

|x
y
− xn
yn
| < 1 + ε

yn

(
an + xn

yn
bn

)
We apply this lemma, whose demonstration is given in Appendix A, to:

xn = σ̂B(n) an =
σ̂B(n)Φ−1(1− α

2 )
√
n

yn = σ̂P (n) bn =
σ̂P (n)Φ−1(1− α

2 )
√
n

With n large enough, we thus have the following formula for the uncertainty of the estimation:

|p∗ − p̂n| ≤ (σ̂B(n) + p̂nσ̂P (n))
Φ−1(1− α

2 )
µ̂P (n)

√
n

with a level of confidence of 1− α.
For a portfolio of 50 year old insured lives, using the previous formula, we find that we need

approximately n = 10, 000, 000 simulations to get an uncertainty inferior to 1 % of the premium,
with a level of confidence of 95 %.

6.3 Results
Results of pricing

Age of subscription 40 years 50 years 60 years 70 years
Base monthly premium 15.83 € 21.96 € 32.79 € 54.63 €
Impact of deferral period - 0.70 € - 0.97 € - 1.44 € - 2.44 €

Impact of elimination period - 0.02 € - 0.05 € - 0.25 € - 1.43 €
Impact of counter-insurance < 0.01 € < 0.01 € + 0.02 € + 0.11 €
Final monthly premium 15.12 € 20.95 € 31.12 € 50.88 €

Table 4: Premium and impact of associated features on premium for several ages of subscription.

Reserves

In long-term care insurance, we are mostly interested in two kinds of technical reserves:

• Reserves for premiums: As the incidence rate increases with age, so does the long-term
care risk. With level premiums, the insured lives pay more than the cost of their current
risk at the beginning of the contract and less at the end. The difference thus needs to be
added to reserves to cope with increasing future risk.
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• Reserves for claims: These reserves aim at covering the cost of benefits for people who
already are dependent. For each dependent insured life, annual reserves are created, where
the amounts are equal to the expectancy of claims, given the situation of the individual. In
our model, these reserves depend on age of entry s, current state of dependency i, and time
x spent in this state of dependency. As for the premium, the amount of these reserves for a
combination of the 3 variables can be evaluated by performing simulations. In practice this
computation can be really difficult. We can only assess the amount of reserves for a finite
number of variable combinations. Furthermore, we cannot generate trajectories where the
insured life would already be dependent for some time at the start, so the combinations we
can access are very limited.

Figure 12 displays the amount of reserves needed for a portfolio of 10,000 insured lives subscribing
at the age of 50.
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Figure 12: Amount of technical reserves for a portfolio of 10,000 insured lives.

Sensitivity to different risk factors

Sampling risk associated with the insurer’s portfolio

We first want to quantify the sampling risk associated with the insurer’s portfolio. We
consider a portfolio of 10,000 insured lives aged 50 at subscription. We run 20,000 simulations
of the whole portfolio, for a total of 200 million individual trajectories simulated, in order to get
the associated distribution of NPV. Figure 13 represents the fitted distribution. It looks very
similar to a normal distribution, with a mean near 0, meaning that the estimated premium is
pretty close to the true value. From a Solvency II point of view an insurer would need a capital
of 3,032,000 € to cope with this specific risk on the portfolio.
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Figure 13: Distribution of NPV for a portfolio of 10,000 insured lives. Dashed green line: mean.
Dotted red line: 0.5 % percentile.

Other factors of risk

The impact of other factors of risk: incidence rate, mortality rate for autonomous people,
dependency duration laws and interest rates are given in table 5.

Shocks Incidence
rate

Autonomous
mortality rate

Transition times
in dependency

Interest
rate

Value of shock + 10 % - 10 % + 10 % + 100 bps
Resulting premium

(20.95 € with no shock) 22.06 € 21.43 € 23.05 € 17.20 €

Relative variation + 5.3 % + 2.3 % + 10.0 % - 17.9 %

Table 5: Sensitivity to different risk factors.

A shock on incidence rate naturally increases the long-term care risk, but in lesser proportions
as it also reduces the size of the autonomous population and thus its exposure. A shock on
mortality rate has a dual effect: an increase in the expectancy of premiums paid by autonomous
insured lives but also an increase of the risk exposure of the population. This second effect
actually outweighs the first, and the level of the premium needs to be increased to restore the
balance. A shock on transition times in dependency has a straightforward effect on the level
of premium required, as the amount of benefit is almost proportional to the time spent in
dependency (except for the initial amount of cash and the payment deferral period). A shock on
interest rate has a tremendous impact on the level of the required premium, as long-term care
products have a very long duration. Hence, we can expect those products to become much more
attractive in a situation of high interest rate.

7 Conclusion
In this paper, we have described the steps to construct a 4 state semi-Markov model for long-term
care insurance, as well as the many problems encountered and the solutions we have chosen. This
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model can be used for the pricing of more complex products with several levels of guarantee,
to match the level of dependency of the insured lives, and thus better meet their needs. It
should also offer a more accurate quantification of the risk through reserves, as more information
(state of dependency, time spent in dependency) about the dependent insured lives is taken into
account. Besides, the use of a Monte Carlo method naturally allows us to get the distribution of
the NPV of the portfolio. Hence we can compute the amount of capital needed from a Solvency
II point of view. Finally, the various parameters or laws used in the model can be interpreted in
regard to medical experience about the dependency process. Therefore, we could use the model
to test the impact of various scénarii involving advances in the field of medicine, e.g. an increased
prevalence of a particular disease among dependent people.

However, it should be noted that the model underestimates the survival times in dependency.
Indeed, the life expectancy in dependency given by the model is only 2.55 where Debout 2010
computes an expectancy of 4.0 years based on APA data from 2002 to 2007 gathered over 300,000
beneficiaries. This spread can be linked to the limited length of the observation period. Observed
trajectories are censored and therefore their length cannot exceed 3 years. Hence, the density
of the duration law has to be extrapolated beyond the point where there is no data available.
As a consequence, any error on observed trajectories is also reflected in the extrapolated part
of the density. As the APA was only created in 2002, our data is strongly impacted by the
stock effect we described before, even after deleting trajectories which started in 2002. Hence,
observed transition times are underestimated and so is the whole density of duration laws. With
longer series of data, whose observations would be further away from 2002, we should be able to
eliminate this problem and get more realistic results.

The model we introduced could also be improved in several ways. The first thing that comes
to mind is to calibrate a different model for each sex. This would be relevant as mortality
rates are not the same for men and women. Furthermore, the incidence of diseases that cause
dependency is not the same for men and women. Men are more vulnerable to cardiovascular
diseases, while dementia is more frequent in women. Another way of improving the model would
be to consider that the mixture parameters depend on the age (for example linearly). Indeed,
the diseases responsible for entry in dependency change with age e.g. dependency following a
cancer is very frequent at ages of 50 or 60, but become rare at ages of 80 or 90. However, we
would have to be careful not to introduce too many parameters to model the effect of age, as
they could eventually be substituted with one other, which would result in many local optima
and make the calibration very difficult. In both cases, a better understanding of the diseases
causing dependency, based on real data, is essential in order to be able to verify and interpret
the results obtained after applying the improvements.
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Appendix

Appendix A: Proof of the lemma
We first prove that:

If x, x
′
≥ 0 and y, y

′
> 0 and a, b ∈ R such that |x− x

′
| < a < x

′
and |y− y

′
| < b < y

′
, then:

|x
y
− x

′

y′ | <
a

y′ + (x′ + a)b
y′(y′ − b)

We have, on one hand:

x

y
− x

′

y′ >
x

′ − a
y′ + b

− x
′

y′

>
x

′ − a
y′

1
1 + b

y′

− x
′

y′

>
x

′ − a
y′

1− b

y′ +
b2

y′2

1 + b
y′

− x
′

y′

>
x

′ − a
y′

(
1− b

y′

)
− x

′

y′

> − a
y′ −

bx
′

y′2 + ab

y′2

> − a
y′ −

bx
′

y′2

On the other hand:
x

y
− x

′

y′ <
x

′ + a

y′ − b
− x

′

y′

<
x

′ + a

y′

1
1− b

y′

− x
′

y′

<
x

′ + a

y′

(
1 + b

y′

1
1− b

y′

)
− x

′

y′

<
x

′ + a

y′

(
1 + b

y′ − b

)
− x

′

y′

<
a

y′ + (x′ + a)b
y′(y′ − b)

Therefore:

|x
y
− x

′

y′ | < max
(
a

y′ + bx
′

y′2 ,
a

y′ + (x′ + a)b
y′(y′ − b)

)
<

a

y′ + (x′ + a)b
y′(y′ − b)

Let x ≥ 0 and y > 0. If xn, yn, an, bn are four series such that:{
xn →

n→+∞
x

yn →
n→+∞

y

{
an →

n→+∞
0

bn →
n→+∞

0

 |xn − x| < an

|yn − y| < bn
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Let ε > 0. For n large enough, we have |xn − x| < an < xn and |yn − y| < bn < yn.
Hence:

|x
y
− xn
yn
| <

an
yn

+ (xn + an)bn
yn(yn − bn) ∼

n→+∞

1
yn

(
an + xn

yn
bn

)
which gives us the result.

Appendix B: Parameters used in the final model and their calibrated
values

pi,j(s) GIR 3 GIR 2 GIR 1 death
GIR 4 b4,3 + a4,3 × s b4,2 + a4,2 × s b4,1 (1− b4,3 − b4,2 − b4,1)− (a4,3 + a4,2)× s
GIR 3 b3,2 b3,1 + a3,1 (1− b3,2 − b3,1)− a3,1 × s
GIR 2 b2,1 + a2,1 × s (1− b2,1)− a2,1 × s
GIR 1 1

Table 6: Jump probabilities in the final model.

Fi,j(s, x) GIR 3
GIR 4 Wν1

4,3,σ
1
4,3

(xeβ
1
4,3s)

Fi,j(s, x) GIR 2
GIR 4 (1− λ4,2)Wν1

4,2,σ
1
4,2

(xeβ
1
4,2s) + λ4,2Wν2

4,2,σ
2
4,2

(xeβ
2
4,2s)

GIR 3 Wν1
3,2,σ

1
3,2

(xeβ
1
3,2s)

Fi,j(s, x) GIR 1
GIR 4 (1− λ4,1)Wν1

4,1,σ
1
4,1

(xeβ
1
4,1s) + λ4,1Wν2

4,1,σ
2
4,1

(xeβ
2
4,1s)

GIR 3 Wν1
3,1,σ

1
3,1

(xeβ
1
3,1s)

GIR 2 Wν1
2,1,σ

1
2,1

(xeβ
1
2,1s)

Fi,j(s, x) death
GIR 4 (1− λ4,0)W(ν1

4,0,σ
1
4,0)(xeβ

1
4,0s) + λ4,0Wν2

4,0,σ
2
4,0

(xeβ
2
4,0s)

GIR 3 (1− λ3,0)Wν1
3,0,σ

1
3,0

(xeβ
1
3,0s) + λ3,0Wν2

3,0,σ
2
3,0

(xeβ
2
3,0s)

GIR 2 (1− λ2,0)Wν1
2,0,σ

1
2,0

(x) + λ2,0Wν2
2,0,σ

2
2,0

(xeβ
2
2,0s)

GIR 1 (1− λ1,0)Wν1
1,0,σ

1
1,0

(xeβ
1
1,0s) + λ1,0Wν2

1,0,σ
2
1,0

(x)

Table 7: Duration laws in the final model.
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ai,j 3 2 1 0 bi,j 3 2 1 0
4 0.0016 0.0031 − 0.0048 4 0.166 − 0.0022 0.018 0.837
3 0.0012 − 0.0012 3 0.440 − 0.045 0.605
2 − 0.0037 0.0037 2 0.452 0.548
1 0 1 1
ν1
i,j 3 2 1 0 σ1

i,j 3 2 1 0
4 1.46 1.67 1.95 7.76 4 0.07 0.032 0.58 0.10
3 1.47 1.62 1.28 3 0.15 0.12 0.67
2 1.51 1.17 2 0.12 1.96
1 1.14 1 1.20
ν2
i,j 3 2 1 0 σ2

i,j 3 2 1 0
4 4.07 4.02 1.17 4 0.08 0.06 0.07
3 2.77 3 0.08
2 2.64 2 0.09
1 2.42 1 0.54
β1
i,j 3 2 1 0 β2

i,j 3 2 1 0
4 0.0216 0.0114 0.048 0.0135 4 0.0178 0.0233 0.0248
3 0.0154 0.0187 0.0106 3 0.0190
2 0.0164 2 0.0178
1 0.0129 1
λi,j 3 2 1 0
4 0.52 0.51 0.72
3 0.57
2 0.64
1 0.63

Table 8: Values of parameters in the final model.
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