The Devil is in the Differences

Exploring Sources of Variability in Catastrophe Models

Roger Grenier, Ph.D. Director, Catastrophe Research and Development Global Reinsurance Strategy Group ICA Conference April 2014

Fill in the Blank:

Why Are Catastrophe Models so ____

Logical

Complicated

Different

Critical

Wrong

?

Useful

ICA Conference 2014

Catastrophe Models Help to Better Quantify the Risk and Potential Losses

Simulate Parameters To Create a Catalog of Synthetic Events

Historical Events are Sparse in Time and Space

www.weather.com

- On average, roughly 12 storms form in the Atlantic Basin each year
 - Only 6 hurricanes, and 2-3 major hurricanes (CAT 3-5)
 - Fewer than 2 landfalls, with only 0.6 major landfalls per year

Earthobservatory.nasa.gov

How Do the Modelers Handle the Data?

AIR Worldwide

- Smoothing techniques applied to historical data
 - Landfall rates vary by geography and intensity
 - Smoothing methodologies can be different
 - Results in different risk profiles along the coast
- Similar issues arise with other model parameters

Model Volatility is Driven Largely By Lack of Credible Data and Not New Scientific Knowledge

*Overland

Because There is So Little Data Scientists Can Disagree and Change Their Minds and Make Mistakes

RMS Wind Footprint for the Same Storm in Two Model Versions

What Happened on December 16, 1811?

- A violent shock of an earthquake was accompanied by a very awful noise resembling loud but distant thunder
- Complete saturation of the atmosphere with sulphurious vapor causing total darkness ...
- The cries of fowls and beasts of every species and the crackling of trees falling ...
- The roaring of the Mississippi ...

From Eliza Bryan's personal account in *Lorenzo Dow's Journal*, published by Joshua Martin in 1849.

Whatever We Know About the Damage is from Newspaper Accounts

Locality	MM Intensity	Source of Information
New Madrid, Mo.	X-XI	Penn. Gaz., Mar. 18, 1812
Cape Girardeau, Mo.	IX	La. Gaz., Feb. 29, 1812
Cahokia, Ill.	IX	McDermott (1949, p. 317)
St. Louis, Mo.	VIII-IX	La. Gaz., Feb. 8, 1812
Savannah, Ga.	IV-VI	N.Y. Post, Mar. 5,1812
Richmond, Va.	V-VI	N.Y. Post, Feb. 18, 1812
Pittsburgh, Pa.	V-VI	Pitt. Gaz., Feb. 14, 1812
New Orleans, La.	V	N.Y. Post, Mar. 5, 1812
Augusta, Ga.	V	N.Y. Post, Mar. 5, 1812
Washington, D.C.	V	N.Y. Post, Feb. 11, 1812
Alexandria, Va.	IV-V	N.Y. Post, Feb. 12, 1812
Baltimore, Md.	IV-V	Penn. Gaz., Feb. 12, 1812
New York, N.Y.	IV-V	Penn. Gaz., Feb. 12, 1812

INTENSITY VALUES FOR EARTHQUAKE OF FEBRUARY 7, 1812 AT 09h45m GMT

There is Scientific Disagreement on the Magnitudes of the Earthquakes and the Return Periods

Logic Tree for New Madrid Seismic Zone (NMSZ) from the USGS 2008 Report – What We Know We Don't Know

Vulnerability Module Converts Intensity to Damage

Wind Speed

Wind speed

How Are Damage Functions Developed?

- Claims Data
 - Majority of claims are for residential policies
 - Mostly for recent events (Florida, Texas) where wind was a significant cause of loss
 - Each modeler interprets the results differently
- Published engineering studies
- Post disaster surveys

 Large scale model tests are becoming more common

Variability Within and Across Occupancies Presents a Challenge

Hotels

Office

Retail

ICA Conference 2014

There is Significant Variability around the mean Damage Ratio

Generally, Results are Less Reliable for Small, Complex Exposures

Increasing portfolio complexity

Sanity Checks

- Historical Results
 - Modelers provide historical event catalogs to allow as-if analyses
 - Understand exposure change to interpret results
 - +/- 20% reasonability threshold; look for bias
- Market share of loss
 - Compute market share of industry loss (vs exposure/premium)
 - Aggregate models are useful for this purpose
- Old-fashioned aggregates
 - Useful on their own, and are a good benchmark for model assessment
 - PML/Limit ratios, regional and historical trends become good methods for tracking results over time

Models Provide a Rational Framework, but have Limitations

- There's not as much data as you think
 - Limited historical data
 - Requires many assumptions
- Model components include science and art
 - Generally accepted techniques, but few prescribed rules
 - Modeler judgment and methodologies have a material impact on results
- Lack of transparency and internal consistency
- Alternative tools are critical to a robust risk management process

Industry Trend: Deeper Analytics, Greater Transparency

KAREN CLARK & COMPANY

