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Chapter 5: Generalized Linear 

Models 

by Curtis Gary Dean, FCAS, MAAA, CFA 

Ball State University:  Center for Actuarial Science and  

                          Risk Management 
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My Interest in Predictive Modeling 

 1989 article in Science 

 

 “Clinical Versus Actuarial Judgment” 

 

 Summarized in 1990 in Contingencies 
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“Clinical Versus Actuarial Judgment” 
 

 “In the clinical method the decision-maker 
combines or processes information in his or 
her head.” 

 

 “In the actuarial or statistical method the 
human judge is eliminated and conclusions 
rest solely on empirically established 
relations between data and the condition or 
event of interest.” 
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“Clinical Versus Actuarial Judgment” 

 “…with a sample of about 100 studies and the 
same outcome obtained in almost every case, 
it is reasonable to conclude that the actuarial 
advantage is not exceptional but general and 
likely encompasses many of the unstudied 
judgment tasks.” 
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“Clinical Versus Actuarial Judgment” 

 

 “To be truly actuarial, interpretations must be 
both automatic (that is, prespecified or 
routinized) and based on empirically 
established relations.”  

 

 Gary’s statement:  “This is predictive 
modeling (predictive analytics).” 
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“Clinical Versus Actuarial Judgment” 

 

 “Even when given an information edge, the 
clinical judge still fails to surpass the 
actuarial method; in fact, access to additional 
information often does nothing to close the 
gap between the two methods.” 
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Why Use Generalized Linear Models? 

 Can readily see link between 
predictors and outcomes 

 

 Useful statistical tests for coefficients 
and fit of model 

 

 Easier to explain than some other 
methods 

 

 Software is widely available 
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Classical Multiple Linear Regression 

 μi = E[Yi] =  a0 + a1Xi1 + …+ amXim 

 

 

 Yi  is Normally distributed random variable 
with constant variance σ2 

 

 

 Want to estimate μi = E[Yi] for each i 
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Problems with Traditional Model 

 Number of claims is discrete 
 

 Claim sizes are skewed to the right 
 

 Probability of an event is in [0,1] 
 

 Variance is not constant across data 
points i 
 

 Nonlinear relationship between X’s and 
Y’s 
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Generalized Linear Models - GLMs 

 Fewer restrictions 
 

 Y can model number of claims, probability of 
renewing, loss severity, loss ratio, etc. 
 

 Large and small policies can be put into one 
model 
 

 Y can be nonlinear function of X’s 
 
 Classical linear regression model is a special 

case 
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Generalized Linear Models - GLMs 

 g(μi )= a0 + a1Xi1 + …+ amXim 

 
 g( ) is the link function 

 
 E[Yi] = μi =  g-1(a0 + a1Xi1 + …+ amXim) 

 
 Yi can be Normal, Poisson, Gamma,     

 Binomial, Compound Poisson, … 
 

 Variance can be modeled 
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Exponential Family of Distributions – 
Canonical Form 
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Why Exponential Family? 

 Distributions in Exponential Family can  
 model a variety of problems 

 
 

 Standard algorithm for finding  coefficients 
a0, a1, …, am 
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Normal Distribution in Exponential Family 
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Normal Distribution in Exponential Family 
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Poisson Distribution in Exponential Family 
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Compound Poisson Distribution 

 Y = C1 + C2 + . . . + CN 

 

 N  is Poisson random variable 

 Ci  are i.i.d. with Gamma distribution 

 

 This is an example of a Tweedie distribution 

 

 Y is member of Exponential Family 
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Members of the Exponential Family 

• Normal 

• Poisson 

• Binomial 

• Gamma 

• Inverse Gaussian 

• Compound Poisson 
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            V(μ) 

 Normal                    0 

 Poisson               

 Binomial                (1-) 

 Tweedie                p, 1<p<2 

 Gamma                    2 

 Inverse Gaussian                 3 

 

 

   
 

 

 

Var[Yi] = Φ V(μi)/wi 
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Variance of Yi and Fit at Data Point i 

 Var(Yi)  is big →  looser fit at data point i 

 

 Var(Yi)  is small →  tighter fit at data   
    point i 
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Estimating Coefficients a1, a2, .., am 

 Classical linear regression uses least 
squares 

 

 GLMs use Maximum Likelihood Method 
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Which Exponential Family Distribution? 

 Frequency:  Poisson 

 

 Severity:   Gamma 

 

 Loss ratio:  Compound Poisson 

 Pure Premium:  Compound Poisson 

 

 How many policies will renew: Binomial 
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What link function? 

 Additive model:  identity 

 

 

 Multiplicative model:  natural log 

 

 

 Modeling probability of event:  logistic 



Chapter 5: Generalized Linear Models 

 Intended as a first exposure to GLMs 

 

 Tried to make it accessible and self-
contained 

 

 Hard to squeeze everything into one 
chapter – at Ball State the topic spans 
a semester-long course 
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5.1 Introduction to Generalized Linear Models 

5.1.1 Assumptions of Linear Model 

-  Shortcomings for actuarial applications 
   

 

5.1.2 Generalized Linear Model Assumptions 
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 5.2 Exponential Family of Distributions 
 

5.2.1  The Variance Function and the 
Relationship between Variances and Means 

 

5.3  Link Functions 

 

5.4  Maximum Likelihood Estimation 
 

5.2.1  Quasi-likelihood  

 

5.5 Generalized Linear Model Review 
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5.6 Applications 

5.6.1 Modeling Probability of Cross Selling with 
Logit  Link 

 

5.6.2 Claim Frequency with Offset 

 

5.6.3 Severity with Weights 

 

5.6.4 Modeling Pure Premiums or Loss Ratios 
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5.7 Comparing Models 

5.7.1 Deviance 

 

5.7.2  Log-likelihood, AIC, AICC, and BIC 
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The End 


