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Chapter 5: Generalized Linear 

Models 

by Curtis Gary Dean, FCAS, MAAA, CFA 

Ball State University:  Center for Actuarial Science and  

                          Risk Management 
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My Interest in Predictive Modeling 

 1989 article in Science 

 

 “Clinical Versus Actuarial Judgment” 

 

 Summarized in 1990 in Contingencies 
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“Clinical Versus Actuarial Judgment” 
 

 “In the clinical method the decision-maker 
combines or processes information in his or 
her head.” 

 

 “In the actuarial or statistical method the 
human judge is eliminated and conclusions 
rest solely on empirically established 
relations between data and the condition or 
event of interest.” 
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“Clinical Versus Actuarial Judgment” 

 “…with a sample of about 100 studies and the 
same outcome obtained in almost every case, 
it is reasonable to conclude that the actuarial 
advantage is not exceptional but general and 
likely encompasses many of the unstudied 
judgment tasks.” 
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“Clinical Versus Actuarial Judgment” 

 

 “To be truly actuarial, interpretations must be 
both automatic (that is, prespecified or 
routinized) and based on empirically 
established relations.”  

 

 Gary’s statement:  “This is predictive 
modeling (predictive analytics).” 
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“Clinical Versus Actuarial Judgment” 

 

 “Even when given an information edge, the 
clinical judge still fails to surpass the 
actuarial method; in fact, access to additional 
information often does nothing to close the 
gap between the two methods.” 
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Why Use Generalized Linear Models? 

 Can readily see link between 
predictors and outcomes 

 

 Useful statistical tests for coefficients 
and fit of model 

 

 Easier to explain than some other 
methods 

 

 Software is widely available 
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Classical Multiple Linear Regression 

 μi = E[Yi] =  a0 + a1Xi1 + …+ amXim 

 

 

 Yi  is Normally distributed random variable 
with constant variance σ2 

 

 

 Want to estimate μi = E[Yi] for each i 
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Response Yi  has Normal Distribution 

   μi  
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Problems with Traditional Model 

 Number of claims is discrete 
 

 Claim sizes are skewed to the right 
 

 Probability of an event is in [0,1] 
 

 Variance is not constant across data 
points i 
 

 Nonlinear relationship between X’s and 
Y’s 
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Generalized Linear Models - GLMs 

 Fewer restrictions 
 

 Y can model number of claims, probability of 
renewing, loss severity, loss ratio, etc. 
 

 Large and small policies can be put into one 
model 
 

 Y can be nonlinear function of X’s 
 
 Classical linear regression model is a special 

case 
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Generalized Linear Models - GLMs 

 g(μi )= a0 + a1Xi1 + …+ amXim 

 
 g( ) is the link function 

 
 E[Yi] = μi =  g-1(a0 + a1Xi1 + …+ amXim) 

 
 Yi can be Normal, Poisson, Gamma,     

 Binomial, Compound Poisson, … 
 

 Variance can be modeled 
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Exponential Family of Distributions – 
Canonical Form 
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Why Exponential Family? 

 Distributions in Exponential Family can  
 model a variety of problems 

 
 

 Standard algorithm for finding  coefficients 
a0, a1, …, am 
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Normal Distribution in Exponential Family 





















 

































 


2

2

2

2

2

2

22

2

2

2

2

2

2ln
2

2/
exp

2

2
exp

2

1
lnexp

2

)(
exp

2

1
),;(



















yy

yy

y
yf



16 

Normal Distribution in Exponential Family 
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Poisson Distribution in Exponential Family 
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Compound Poisson Distribution 

 Y = C1 + C2 + . . . + CN 

 

 N  is Poisson random variable 

 Ci  are i.i.d. with Gamma distribution 

 

 This is an example of a Tweedie distribution 

 

 Y is member of Exponential Family 
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Members of the Exponential Family 

• Normal 

• Poisson 

• Binomial 

• Gamma 

• Inverse Gaussian 

• Compound Poisson 
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            V(μ) 

 Normal                    0 

 Poisson               

 Binomial                (1-) 

 Tweedie                p, 1<p<2 

 Gamma                    2 

 Inverse Gaussian                 3 

 

 

   
 

 

 

Var[Yi] = Φ V(μi)/wi 
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Variance of Yi and Fit at Data Point i 

 Var(Yi)  is big →  looser fit at data point i 

 

 Var(Yi)  is small →  tighter fit at data   
    point i 
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Estimating Coefficients a1, a2, .., am 

 Classical linear regression uses least 
squares 

 

 GLMs use Maximum Likelihood Method 
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Which Exponential Family Distribution? 

 Frequency:  Poisson 

 

 Severity:   Gamma 

 

 Loss ratio:  Compound Poisson 

 Pure Premium:  Compound Poisson 

 

 How many policies will renew: Binomial 
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What link function? 

 Additive model:  identity 

 

 

 Multiplicative model:  natural log 

 

 

 Modeling probability of event:  logistic 



Chapter 5: Generalized Linear Models 

 Intended as a first exposure to GLMs 

 

 Tried to make it accessible and self-
contained 

 

 Hard to squeeze everything into one 
chapter – at Ball State the topic spans 
a semester-long course 
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5.1 Introduction to Generalized Linear Models 

5.1.1 Assumptions of Linear Model 

-  Shortcomings for actuarial applications 
   

 

5.1.2 Generalized Linear Model Assumptions 
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 5.2 Exponential Family of Distributions 
 

5.2.1  The Variance Function and the 
Relationship between Variances and Means 

 

5.3  Link Functions 

 

5.4  Maximum Likelihood Estimation 
 

5.2.1  Quasi-likelihood  

 

5.5 Generalized Linear Model Review 
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5.6 Applications 

5.6.1 Modeling Probability of Cross Selling with 
Logit  Link 

 

5.6.2 Claim Frequency with Offset 

 

5.6.3 Severity with Weights 

 

5.6.4 Modeling Pure Premiums or Loss Ratios 
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5.7 Comparing Models 

5.7.1 Deviance 

 

5.7.2  Log-likelihood, AIC, AICC, and BIC 

29 



30 

The End 


