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Abstract. Epidemic outbreaks, which have been observed in recent years, have caused a big impact on modern 

society once if they are occurred. We recall, for examples, SARS (Severe Acute Respiratory Syndrome), Ebola 

virus diseases, MERS (Middle East Respiratory Syndrome), dengue and/or Zika fever and so on. Insurance 

companies have a potential to mitigate the effect of such events. Here we propose a simple stochastic model for 

an insurer to estimate the risk of epidemic outbreaks.  

The construction of our model is based on several apparently separate aspects. The first one is a rough 

estimate on ultimate number of removals once the epidemic burst takes place. This is given through the 

threshold theorem, which is originally due to Kermack and McKendrick. The second point is the onset of 

epidemic outbreaks, which is modelled by the doubly stochastic Poisson process. This part is motivated by the 

catastrophe options as risk transfer instruments. Finally, the market risk is involved to derive a financial product.  

 

Key words: Epidemic outbreaks, Kermack-McKendrick model, Threshold theorem, Doubly stochastic Poisson 

processes, Catastrophe options, Risk estimation model for an insurer 

 

I. INTRODUCTION 

It has been observed in recent years that epidemic outbreaks, such as SARS (Severe Acute 

Respiratory Syndrome), Ebola virus diseases, MERS (Middle East Respiratory Syndrome), 

dengue and/or Zika fever, and so on, sometimes made a large impact on the modern society. 

These phenomena are challenging issues for whole world. 

Apart from the scientific research, the function of insurance companies will be important in 

order to mitigate and stabilize the effect due to epidemic bursts. The overall estimate of the 

risk from these tragic events is then necessarily investigated. 

In this article, we introduce a simple stochastic model to estimate such risk of epidemic 

outbreaks for an insurer. 

Our strategy is a combination of several apparently independent ingredients. The first 

aspect is of course a mathematical modeling of diseases, which has been studied over 300 

years and much progress has been made so far. Here we just employ the classical 

deterministic model of Kermack and McKendrick, one of whose important outcomes is the 

so-called threshold theorem; we can estimate a rough number of ultimate removed 

individuals from the population suffering from an infectious disease. 

The second point is the onset of epidemic outbreaks, which is regarded as a trigger variable 

and is described by a stochastic process. From the financial viewpoint of an insurer, the 
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phenomenon of epidemic bursts is of a catastrophic nature because it may bring enormous 

financial expenditures within the short period of time. Such a feature makes it similar to the 

catastrophic events such as a huge earthquake, a big typhoon, and so on. We utilize a doubly 

stochastic Poisson process to model the onset. 

Finally, in addition to above, the point to be involved is the market risk. Once an epidemic 

outbreak takes place, a depression will follow and we should be concerned with the 

depreciation of securities. We simply use a standard Black-Scholes-Merton type model to 

evaluate the depreciation process. Combining all together, we are then able to estimate the 

risk of the considered epidemics bursts by taking the expectation.  

The present paper is a slight extension as well as modification with necessary corrections of 

our previous work [7] together with establishments made in [8]. The organization is as 

follows: In Section II, preliminary issues of our classical epidemic model as well as 

stochastic process are recalled. Our model for the estimation of risk is explained in Section III. 

Section IV is devoted to the proof and the computation of risk. Section V concludes with 

discussion.   

II. PRELIMINARY 

Here we recall several known basic concepts for the readers' convenience.  

A. Structured risk management products 

Compared to the traditional approach to risk management, the emerging approach has been 

developed and applied extensively since 1980s. The former approach is based on 

standardized insurance products and treated on a case-by-case basis. The latter approach, on 

the other hand, combines insurance risks and financial risks and is handled on a long term 

risk management program, which involves multiple long term risks and is implemented by 

the so-called structured risk management products. Examples of transactions include dual 

trigger instruments, some catastrophe options, and so on.  

Our proposed model for estimating the risk for an insurer of epidemic outbreaks is on the 

line of this concept of structured risk management products; we observe common 

characteristics to the catastrophe options. The writer of these products may expect higher 

return if no epidemics bursts takes place. For further details and other information, we refer 

for instance to a nice paper by Cox, Fairchild, and Pedersen [1]. 

B. Epidemic Model 

In the present article, for our epidemic modeling, we simply employ the classical 

deterministic Kermack-McKendric model, since it gives a benchmark result for later 

sophisticated researches. For background issues and other details, see for instance, nice 

monographs by Dalley and Gani [3], Murray [11].  
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Let 𝑥(𝑡) denote the number of susceptibles, 𝑦(𝑡) infectives, and 𝑧(𝑡) removals, which are 
counted according to the disease status. We note that removals mean dead, isolated, or 

immune individuals. The total size of the population 𝑁 = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) is assumed and 

turned out to be fixed for all 𝑡 ≥ 0.  

The system of ordinary differential equations due to Kermack and Mckendrick is then 

expresses as follows:  

                                                     
𝑑𝑥(𝑡)

𝑑𝑡
= −𝛽𝑥(𝑡)𝑦(𝑡)                                                                      (1) 

                                                      
𝑑𝑦(𝑡)

𝑑𝑡
= 𝛽𝑥(𝑡)𝑦(𝑡) − 𝛾𝑦(𝑡)                                                         (2) 

                                                      
𝑑𝑧(𝑡)

𝑑𝑡
= 𝛾𝑦(𝑡).                                                                                 (3) 

 

The equations is analysed under the initial conditions (𝑥(0), 𝑦(0), 𝑧(0)) = (𝑥0, 𝑦0, 0) with 

𝑥0 + 𝑦0 = 𝑁. Here, 𝛽 denotes the infection parameter representing the strength of epidemics, 

and 𝛾 is the removal parameter indicating the rate of infectives becoming immune. We define 

the critical parameter 𝜌 = 𝛾/𝛽  as the relative removal rate. It is easy to see that 𝑥(𝑡) is 

monotone non-increasing, and 𝑧(𝑡)  is non-decreasing. If 𝑥0 ≤ 𝜌 , then 𝑦(𝑡)  is monotone 

decreasing for all 𝑡 > 0.  
Now the well-known Kermack-Mckendrick threshold theorem is summarized as follows, 

whose way of formulation is essentially taken from [3].  

 

Theorem (Kermack and Mckendrick). (i) Let 𝑥∞ = lim
𝑡→∞

𝑥(𝑡) and 𝑧∞ = lim
𝑡→∞

𝑧(𝑡). Then, when 

infection ultimately ceases spreading, it follows that  

                     𝑁 − 𝑧∞ = 𝑥0 + 𝑦0 − 𝑧∞ = 𝑥0𝑒
−

𝑧∞
𝜌  ,                

where 𝑦0 < 𝑧∞ < 𝑥0 + 𝑦0 = 𝑁.  

(ii)  A major outbreak occurs if and only if 𝑥0 > 𝜌.  

(iii) If  𝑥0 = 𝜌 + 𝜈 with small 𝜈 > 0 and 𝑦0 is small relative to 𝜈, then the total number of 

susceptibles left in the population are approximately 𝜌 − 𝜈, and we have 

                                                      𝑧∞ ≈ 2𝜈
𝜌

𝜌 + 𝜈
≈ 2𝜈 .                                                                      (4) 

 

Here we just exhibit a sketch of proof for the readers’ convenience. First we note that  

                         
𝑑

𝑑𝑡
(𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡)) = 0 ,                        

and hence 

                           𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) = 𝑁                                  
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for all 𝑡 ≥ 0.  
    Next we divide the equation (1) by (3) to obtain  

                               
𝑑𝑥

𝑑𝑧
= −

𝛽

𝛾
𝑥 = −

1

𝜌
𝑥 ,                                

where 𝜌 = 𝛾/𝛽 denotes the relative removal rate. Integration directly gives  

                                   𝑥(𝑡) = 𝑥0𝑒
−

𝑧(𝑡)
𝜌 .                                    

In a similar way we find that 

                                    
𝑑𝑦

𝑑𝑥
= −1 +

𝜌

𝑥
 ,                                      

and so that  

          𝑥(𝑡) + 𝑦(𝑡) − 𝜌 log 𝑥(𝑡) = 𝑥0 + 𝑦0 − 𝜌 log 𝑥0 .                  

Within the region considered where 𝑥 , 𝑦 , 𝑧  are positive, we easily deduce that 𝑦∞ =
lim
𝑡→∞

𝑦(𝑡) = 0, which implies that the identity of (i) holds. The properties (ii) and (iii) of the 

theorem will be deduced by a direct and an approximation argument. We may safely omit the 

details.  

It is known that a detailed analysis on (1)(2)(3) is possible. Indeed, Kendall [9] has 

succeeded in an exact handling and has deduced that 𝑧∞ = 𝜁, where 𝜁 is a positive root of 

                                                     𝑁 − 𝑧 − (𝜌 + 𝜈)𝑒
−

𝑧
𝜌 = 0                                                                 (5) 

See also § 2.3 of [3]. 

We will utilize its outcomes to estimate the risk of epidemics.  

C. Doubly Stochastic Poisson Process 

The onset of epidemic bursts is regarded as a trigger process; as a general model for such 

rare event, we here employ the so-called doubly stochastic Poisson process or a Cox process. 

We refer to Lando [10] or a book of Rolski, Schmidli, Schmidt, and Teugels [12] for other 

background issues.  

The reason why we prefer a doubly-Poisson process to a usual homogeneous Poisson 

process is that the latter has deterministic intensity and hence it is rather inappropriate for 

modelling the resulting claims for epidemics outbreaks. On the other hand, a doubly 

stochastic Poisson process or a Cox process are known to provide flexibility in modelling, 

since the intensity process is allowed to be stochastic.  

Now we turn our attention to our process. Let 𝛬 = {𝜆(𝑡)}𝑡≥0 be an intensity process; 

namely, a nonnegative, measurable, and locally integrable stochastic process. A counting 

process {𝑁(𝑡; 𝛬)}𝑡≥0 is called a Cox process or a doubly stochastic Poisson process with 
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intensity 𝛬 if for each sequence {𝑘𝑗}𝑗=1,2,3,⋯,𝑛 of nonnegative integers, and for 0 < 𝑡1 ≤ 𝑠1 ≤

𝑡2 ≤ 𝑠2 ≤ ⋯ ≤ 𝑡𝑛−1 ≤ 𝑠𝑛−1 ≤ 𝑡𝑛 ≤ 𝑠𝑛, there holds  

𝑃 (⋂{𝑁(𝑠𝑗; 𝛬) − 𝑁(𝑡𝑗; 𝛬) = 𝑘𝑗}

𝑛

𝑗=1

) = ∏ 𝐸 [
1

𝑘𝑗!
(∫ 𝜆(𝑢)𝑑𝑢

𝑠𝑗

𝑡𝑗

)

𝑘𝑗

exp (− ∫ 𝜆(𝑢)𝑑𝑢
𝑠𝑗

𝑡𝑗

)]

𝑛

𝑗=1

 .   

 

One typical example, which is favorably used to measure the effect of catastrophic events, 

and therefore suitable to epidemic bursts also, is the shot noise process. See for example 

Dassios and Jang [4]. However, we will not treat this process in the sequel.  

   The next section is devoted to the introduction of a model for estimating the risk concerning 

epidemic outbreaks, which is performed by the use of a doubly Poisson process or a Cox 

process.  

III. MODEL 

Now we formulate a model to estimate the risk due to epidemic outbreaks for an insurer. 

Main ingredients are as follows. 

(1) The onset of epidemic outbreaks is monitored by a doubly stochastic Poisson process 

𝑁(𝑡) = 𝑁(𝑡; 𝛬) with intensity 𝛬, which should be combined with the epidemic model; for 

example in the Kermack-Mckendrick model, the term like 1{𝑁(𝑇)>𝜌/𝜀} is included. Here 𝜌 > 0 

means the threshold value in the threshold theorem, 1/𝜀 is the magnification parameter with 

small 𝜀 > 0, and 1𝐵 stands for the indicator function; that is,  

    1𝐵(𝜔) =  {
1               𝜔 ∈ 𝐵
0               𝜔 ∉ 𝐵

 .    

(2) Once the epidemic burst takes place, the total number of removals is presumed by the 

threshold theorem; with the original Kermack-McKndrick approximation, we have   𝑧∞ ≈ 2𝜈, 

and with the Kendall's analysis, 𝑧∞ = 𝜁, where 𝜁 is a positive root of (5). 

(3) The occurrence of epidemic outbreaks will result in the market disturbance. Indeed, it was 

observed that South Korea economy experienced a slight depression after the occurrence of 

MERS. Here the market model we consider for the security  {𝑆(𝑡)}𝑡≥0 is a standard Black-

Scholes-Merton type, which is expressed as follows:  

     𝑆(𝑡) = 𝑆0exp [−𝛼𝑁(𝑡) + (𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊(𝑡)] ,      

where 𝑆0 > 0, α > 0, μ > 0 and the volatility 𝜎  are given positive constants. The process 

𝑆(𝑡) is accompanied by the bond process 𝐵(𝑡) = 𝑒𝑟𝑡 with constant interest rate 𝑟. This is just 

a well-known Black-Scholes-Merton model. 𝑁(𝑡) = 𝑁(𝑡; 𝛬) is a doubly stochastic Poisson 

process as above and 𝑊(𝑡) denotes the standard one-dimensional Brownian motion, which is 
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independent of 𝑁(𝑡). The assumption of this independence is acceptable in view of the 

irrelevant occurrence of epidemic bursts.  

Furthermore, under this circumstance, insurance companies keep a policy for the insured. 

For example, if the stop-loss policy is held, the term max{𝑆(𝑇) − 𝐾, 0} is included, where 𝐾 

denotes a retention level and 𝑇 >  0 is the time of maturity, which is interpreted as the period 

of insurance. We note that although  𝑇 does not directly correspond to the ultimate time when 

infection ceases spreading, we may consider that 𝑇 is related to this critical time from the 

viewpoint of estimating the risk.  

In summary, our proposed model for the considered risk 𝑅(𝑡) (0 < 𝑡 ≤ 𝑇) is described as 

the discounted expected value of the combination of above all risk factors. To be precise, we 

have, in view of (4) 

                             𝑅(𝑡): = 𝐸𝑄[𝑒−𝑟(𝑇−𝑡)1
{𝑁(𝑇)>

𝜌

𝜀
}

∙  2𝜈 max{𝑆(𝑇) − 𝐾, 0}] ,                                 (6) 

for the Kermack-McKendrick original approximation, and, with 𝜁 being a positive root of (5),  

                          𝑅(𝑡): = 𝐸𝑄[𝑒−𝑟(𝑇−𝑡)1{𝑁(𝑇)>𝜌/𝜀} ∙ 𝜁max{𝑆(𝑇) − 𝐾, 0}] ,                                      (7) 

for the analysis by Kendall. We remark that the difference is just that 2𝜈 in (6) is replaced by 

𝜁  in (7). In both cases, the calculation of the expectation is implemented under the risk-

neutral probability measure 𝑄 defined below in the next section. 

Now our main analytical estimate of this article is read as follows.  

 

Theorem. We infer that the risk 𝑅(𝑡) for an insurer can be expressed as  

 𝑅(𝑡) = ∑ 2𝜈(

∞

𝑙=𝜈+1

𝑆(𝑡)𝑒−𝛼𝑙+log(𝑀(𝛬(𝑇)−𝛬(𝑡))(𝑘))𝛷(𝑑𝑙 + 𝜎√𝑇 − 𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)𝛷(𝑑𝑙))       

∙ 𝐸 [
(𝛬(𝑇) − 𝛬(𝑡))

𝑙

𝑙!
𝑒−𝑙(𝛬(𝑇)−𝛬(𝑡))] ,                                                

for (6), and for (7), 2𝜈 in 𝑅(𝑡) above is replaced by 𝜁 with 𝜁 being a positive root of (5). Here 

we have put  

                  𝑑𝑙 =
log (

𝑆(𝑡)
𝐾

) + 𝑟(𝑇 − 𝑡) − 𝛼𝑙 + log (𝑀(𝛬(𝑇)−𝛬(𝑡))(𝑘))

𝜎√𝑇 − 𝑡
−

1

2
𝜎√𝑇 − 𝑡 .               (8) 

with 𝑘 ≔ 1 − 𝑒−𝛼and 𝛷(𝑑) denotes the cumulative distribution function for the standardized 

normal distribution  

                       𝛷(𝑑) =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
𝑑

−∞

 .                 
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In the next section, we compute 𝑅(𝑡) in the spirit of no arbitrage principle. In this respect, 

we refer to Cummins and Geman [2].  

IV. PROOF OF THEOREM 

A. Key Lemma 

In order to estimate the risk above, the next lemma is useful, which is taken from [5]. See 

also [1].  

Lemma. Let  {𝑁(𝑡) = 𝑁(𝑡; 𝛬)}𝑡≥0 be a doubly stochastic Poisson process with intensity 𝛬 =

{𝜆(𝑡)}𝑡≥0 and 𝑀𝛬(𝑡)(𝑘) denotes the moment generating function of the aggregated process 

𝛬(𝑡) ≔ ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
; namely 

                           𝑀𝛬(𝑡)(𝑘) = 𝐸[exp (𝑘𝛬(𝑡))] . 

Then, for 𝑘 ≔ 1 − 𝑒−𝛼, the process  

                {exp{−𝛼𝑁(𝑡) + log (𝑀𝛬(𝑡)(𝑘))}}
𝑡≥0

                    

gives a martingale with respect to the minimum augmented filtration ℱ𝑡
𝛬 of  

          𝜎{𝑁(𝑠) | 0 ≤ 𝑠 ≤ 𝑡} .               

Sketch of proof. We wish to show that for 0 ≤ 𝑠 ≤ 𝑡 

𝐸 [exp {−𝛼𝑁(𝑡) + log (𝑀𝛬(𝑡)(𝑘))} | ℱ𝑠
𝛬] = exp{−𝛼𝑁(𝑠) + log (𝑀𝛬(𝑠)(𝑘))} .        

To ensure this, we firstly learn that 

      𝐸[𝑒−𝛼𝑁(𝑡)] = 𝐸 [∑ 𝑒−𝛼𝑙

∞

𝑙=0

𝑃(𝑁(𝑡) = 𝑙)] = 𝐸 [∑ 𝑒−𝛼𝑙
𝛬(𝑡)𝑙

𝑙!

∞

𝑙=0

𝑒−𝛬𝑡]

= 𝐸[exp (𝛬(𝑡)(𝑒−𝛼 − 1))] .  

   We then compute  

𝐸 [exp {−𝛼𝑁(𝑡) + log (𝑀𝛬(𝑡)(𝑘))} | ℱ𝑠
𝛬]                                                                                 

= 𝐸 [exp {−𝛼(𝑁(𝑡) − 𝑁(𝑠)) + log (𝑀(𝛬(𝑡)−𝛬(𝑠))(𝑘))} | ℱ𝑠
𝛬]                                              

∙ exp {−𝛼𝑁(𝑠) + log (𝑀𝛬(𝑠)(𝑘))} 

= 𝐸[exp{−𝛼(𝑁(𝑡) − 𝑁(𝑠))} | ℱ𝑠
𝛬]𝑀(𝛬(𝑡)−𝛬(𝑠))(𝑘) ∙ exp {−𝛼𝑁(𝑠) + log (𝑀𝛬(𝑠)(𝑘))}  

= 𝑀(𝛬(𝑡)−𝛬(𝑠))(−𝑘)𝑀(𝛬(𝑡)−𝛬(𝑠))(𝑘) ∙ exp {−𝛼𝑁(𝑠) + log (𝑀𝛬(𝑠)(𝑘))}                               

= exp{−𝛼𝑁(𝑠) + log (𝑀𝛬(𝑠)(𝑘))} .                                                                                             

This is what we wanted to know and the proof is completed.  
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B. Pricing Formula 

Now we turn our attention to evaluate (6) and (7). The case (6) is treated. First we learn 

that 𝑄-mesaure is defined by  

       𝑊𝑄(𝑡) ≔ 𝑊𝑃(𝑡) +
(𝜇 − 𝑟)𝑡 + log (𝑀𝛬(𝑡)(𝑘))

𝜎
 ,      

where the notation 𝑊𝑃(𝑡) ≔ 𝑊(𝑡) is just used for the sake of avoiding a confusion. The 

Radon-Nikodym derivative process is  

𝑑𝑄

𝑑𝑃
= exp {−

1

2
∫ (

𝜇 − 𝑟 + 𝛾𝑘(𝑠)

𝜎
)

2

𝑑𝑠
𝑡

0

− ∫
𝜇 − 𝑟 + 𝛾𝑘(𝑠)

𝜎
𝑑𝑊𝑃(𝑠)

𝑡

0

} .     

Here 𝛾𝑘(𝑡): = 𝐸[𝜆(𝑡)exp (𝑘𝛬(𝑡))]/𝑀𝛬(𝑡)(𝑘).  

Consequently. in view of the key lemma, we see that the process 𝑒−𝑟𝑡𝑆(𝑡) defined by  

 𝑒−𝑟𝑡𝑆(𝑡) = 𝑆0exp[−𝛼𝑁(𝑡) + log (𝑀𝛬(𝑡)(𝑘))]   ∙ exp [𝜎𝑊𝑄(𝑡) −
1

2
𝜎2𝑡]    

gives a 𝑄-martingale. Thus we are able to compute the discounted value of (6) under 𝑄-

measure.  See a relevant discussion in [5].   

V. DISCUSSIONS 

The phenomena of epidemic outbreaks, once it takes place, brings a huge confusion to the 

stability of modern society. We recall an example of MERS, which occurred in South Korea 

in the spring of 2015 and has resulted in a severe damage in economy, public activity, social 

mind, and other aspects. The risk management on this issue, both from natural and social 

scientific standpoint, is certainly indispensable. This attempt is nothing but the structured risk 

management product.  

In this paper, we have introduced and formulated a simple stochastic model for an insurer 

to estimate the risk which originates from epidemic bursts. The onset of pandemic is 

modelled by a doubly stochastic Poisson process or a Cox process. After the trigger, the 

ongoing of epidemics follows the story described by the Kermack-Mckendrick threshold 

theorem. We then estimate the risk of an insurer subject to above mentioned risk factors. The 

method is based on a similar argument as employed in the case of catastrophe options. The 

closed form solution is obtained.  

As is well known, one of important functions of insurance includes the mitigation of tragic 

events. To conduct this role, however, quantitative estimate on the risk is necessary and for 

such purposes an effective mathematical model is surely needed. Today, so many models for 

the spread of infectious diseases have been analyzed and applied; it may be possible to utilize 

some of them for further studies. Concerning various epidemics models, we refer for instance 
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to a review by Hethcote [6].  

As to applications of our model to real world, we remark that various hedging parameters, 

which are needed for considering hedging strategies, can be computed within our proposed 

model. Indeed, the next proposition is computed. We treat only the case of (6) for simplicity.  

 

Proposition. Let the risk 𝑅(𝑡) for an insurer be given by (6). Then the Delta, Gamma, Rho, 

and Vega of 𝑅(𝑡) are computed as the next expressions, respectively. 

∆(𝑡) =
𝜕𝑅(𝑡)

𝜕𝑆
 = ∑ 2𝜈 𝑒

−𝛼𝑙+log(𝑀(𝛬(𝑇)−𝛬(𝑡))(𝑘))
𝛷(𝑑𝑙 + 𝜎√𝑇 − 𝑡)

∞

𝑙=𝜈+1

∙ 𝐸 [
(𝛬(𝑇) − 𝛬(𝑡))

𝑙

𝑙!
𝑒−𝑙(𝛬(𝑇)−𝛬(𝑡))] ,  

𝛤(𝑡) =
𝜕2𝑅(𝑡)

𝜕𝑆2

= ∑ 2𝜈
𝑒

−𝛼𝑙+log(𝑀(𝛬(𝑇)−𝛬(𝑡))(𝑘))

𝑆(𝑡)𝜎√𝑇 − 𝑡
𝜑(𝑑𝑙 + 𝜎√𝑇 − 𝑡)

∞

𝑙=𝜈+1

∙ 𝐸 [
(𝛬(𝑇) − 𝛬(𝑡))

𝑙

𝑙!
𝑒−𝑙(𝛬(𝑇)−𝛬(𝑡))] ,  

𝜌(𝑡) =
𝜕𝑅(𝑡)

𝜕𝑟
= ∑ 2𝜈 𝐾(𝑇 − 𝑡)𝑒−𝑟(𝑇−𝑡)𝛷(𝑑𝑙)

∞

𝑙=𝜈+1

∙ 𝐸 [
(𝛬(𝑇) − 𝛬(𝑡))

𝑙

𝑙!
𝑒−𝑙(𝛬(𝑇)−𝛬(𝑡))] ,  

𝜈(𝑡) =
𝜕𝑅(𝑡)

𝜕𝜎
= ∑ 2𝜈 𝑆(𝑡)√𝑇 − 𝑡𝑒

−𝛼𝑙+log(𝑀(𝛬(𝑇)−𝛬(𝑡))(𝑘))
𝜑(𝑑𝑙 + 𝜎√𝑇 − 𝑡)

∞

𝑙=𝜈+1

               

∙ 𝐸 [
(𝛬(𝑇) − 𝛬(𝑡))

𝑙

𝑙!
𝑒−𝑙(𝛬(𝑇)−𝛬(𝑡))] ,                   

where 𝑑𝑙 is defined by (8) and 𝜑 = 𝛷′.  

 Despite its importance, the quantitative research on an insurer against epidemic outbreaks, 

to the authors' knowledge, is not so common in the literature. We believe that mathematical 

studies on this subject should be pursued much further. We do hope that our study will put 

something forward on this line. It is to be noted that some empirical investigations should be 
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undertaken, which will be our future project of researches.  

Many questions are still open to further investigations. One of important directions is that 

the character of the pattern of outbreaks should be taken into account. Indeed, the number of 

removals may be different from each epidemics; one is modeled by double peak graphs and 

the other by one peak graph with the tail of dumped oscillations. We will conduct a better 

management if such differences are involved in the models. The other is to discuss certain 

practical applications combined with real data and numerical computation; the evaluation of 

our model may be performed. These will be our another theme for continuing researches. 
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