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ABSTRACT 
In this paper we present an analytical approximation of the best estimate of a savings contract. This 
approximation aims to provide a framework for robust and justifiable calculus for the ORSA without the 
complexity of direct approaches. A numerical application is proposed. 
 

1. INTRODUCTION 

One of the major difficulties of the implementation of Solvency 2 in life insurance is the 
calculation of the value of best estimate liabilities (fair value) for participating contracts. 
Indeed, the complex interactions between the yield of the portfolio of assets  Ar t , the 
increase rate of savings  sr t  and the exit rate  t  lead to complex models for the 
mathematical reserve  PM t  and the fair valuation of the contract (see PLANCHET and LEROY 
[2011] for an overview and PLANCHET and al. [2011] or BRIGO and MERCURIO [2006] for a 
more detailed presentation). 

Practitioners are turning to ad hoc approaches by projecting the flow of benefits under the 
contract with Markov models, and obtaining numerical results relies heavily on simulation. If 
it helps describe the flow dynamics accurately, cumbersome calculations make these models 
difficult to use, configure and maintain. In particular, the use of these approaches within the 
framework of internal models is particularly difficult (cf. BAUER and al. [2010]). 

Since the seminal paper of BRIYS and DE VARENNE [2004] many models in the academic 
literature offer explicit evaluations of best estimates of savings contracts. However these 

                                                 

 
1 The authors thank two referees whose comments have significantly improved this work. We also warmly thanks Pr. Ragnar 
Norberg for helpful comments and support. The authors gratefully acknowledge Anisa Caja for his help in the English 
version of this work. 
Ψ François Bonnin is managing partner at ALTIA. Contact: francois.bonnin@altia.fr. 
 Frédéric Planchet is professor at ISFA. Contact: frederic.planchet@univ-lyon1.fr. 
  Marc Juillard is consulting actuary at WINTER & Associés 
 Université de Lyon, université Lyon 1, Institut de Science Financière et d’Assurances (ISFA) - 50 avenue Tony Garnier - 

69366 Lyon Cedex 07 - France. 
2 ALTIA - 76, rue de la victoire 75009 Paris - France. 



  

 

Best estimate calculations of savings contracts   Page | 2 

 

evaluations are done at the cost of very restrictive assumptions about the design of the 
contract; those assumptions prevent the use of these models for practical assessments. Indeed, 
the literature only considers contracts with terminal bonus, which is not realistic in French 
insurance market (see for instance BACINELLO [2003], HAINAUT [2009], BALLOTTA [2004] 
and the references therein). 

Moreover, most work on this subject is limited to a one year projection of the contract. 
Nevertheless the Own Risk Solvency Assessment (ORSA) implementation requires that the 
insurer projects its balance sheet over several years. AASE and PERSSON [1996] propose an 
analytical approach with a projection of the contract. This is to our knowledge the only work 
that does so, but for a simple contract.  

Markov style models mentioned above are poorly suited to projections, because of the large 
computation time needed and the lack of robustness (which is mainly due to over 
parameterization). Thus, our goal in this paper is to build a model able to take into account 
complex contracts for computing projected best estimates valuations. 

Roughly speaking, the main idea is to use a classical asset-liability model to project the 
statutory balance sheet and compute the mathematical reserve. Then we develop a simple 
framework to compute a coefficient (with a closed formula) which when applied to the 
mathematical reserve gives the associated fair value of the contract. Indeed, in general we 
observe that the best estimate value is near the mathematical reserve (between 95% and 105% 
of it on most cases). Thus we seek a coefficient to be applied to the mathematical reserve that 
accounts for the time value of options. 

We adapt here the model described in GUIBERT and al. [2012] to life insurance. The 
framework is built by directly specifying the dynamics of the increase rate of the contract. In 
our model the best estimate value of the contract becomes computable and its application in 
the ORSA framework shows all its interest. In particular we obtain an explicit expression of 
the Solvency Capital Requirement (SCR) which is easily computable using basic simulation 
technique. 

2. THE BASIC FRAMEWORK 

Consider a savings contract with a surrender value for a policyholder that evolves according 
to (we denote by 0t   the calculation date) 

     
0

0 exp
t

sVR t VR r u du
 

   
 
  

with  sr t  the instantaneous accumulation rate (including any guaranteed rate). Based on this 
equation, and the conditional surrender rate at time t  t , the value of the mathematical 

reserve at time t is      PM t VR t S t   with    
0

exp
t

S t u du
 

  
 
 . 
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One can observe here that in the French GAAP, the surrender value  0VR equals the 
mathematical reserve in the statutory balance sheet at time zero. In particular, the surrender 
rate  is not a compulsory assumption imposed by the regulator (the calculation of the 
statutory reserve is retrospective in French GAAP) but a projection assumption which will be 
used to project the mathematical reserve in the future.  

The best estimate is required to determine the future stream of benefits (see CEIOPS [2010]). 
For the current contract, the payment of the mathematical reserve in case of early withdrawal 
(ratchet or death) and the term T of the contract, assumed to be fixed (non-random), both 
determine these benefits. The flow of updated service contract considered here is simply 
expressed as a function of , the release date (random) of the contract (which is the surrender 
or death time) 

   VR T T        

with    
0

exp
t

t r u du
 

  
 
  the discount factor, for a given short rate process r. The random 

variable is supposed to be a stopping time for the natural filtration associated with the 
process   0,VR t t  . 

a) SOURCES OF RANDOMNESS IN THE ACCUMULATION RATE 

The main idea of this paper is to consider that the accumulation rate  sr t  is affected by two 
kinds of randomness: 

- An hedgeable hazard linked with the market yield of the assets; 
- Corrections to this return by piloting the accounting result. On this point, even if 

the management actions are deterministic, we can consider that there is a source of 
randomness (not hedgeable) associated when the assets were purchased. Indeed, 
the book yield of a transfer of assets depends on the market price of the asset but 
also its cost. This second source of randomness must be introduced into the model.  

The proposed model is also the following: 

     sr t r t t   

with the short interest rate  r t  the hedgeable part of risk and  t  the non-hedgeable one. In 
the next section we derive an explicit expression for the best estimate of this contract. 

b) GENERAL EXPRESSION FOR THE BEST ESTIMATE 

One can note that 

              
0 0

0 0exp exp
t t

sVR t t VR r u r u du VR u du 
   

        
   
  . 
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By definition, the best estimate at time 0t   of the contract is calculated via 

   0,
nh hP QBEL T E    with the historical probability nhP  modeling the non-headgeable 

risks and hQ  a risk-neutral probability modeling hedgeable risk (see PLANCHET and al. [2011] 
or GERBER [1997] for the justification of this formula). 

Because of the decomposition      sr t r t t   we assume that we can split the probability 
nhP  (which represents the risk associated with ) between two components, nh iP P P  . 

In this decomposition, iP  is associated with usual insurance risks, mostly mutualizable ones 
(mortality, structural ratchet, etc.) and P  stands for the risks associated with . 

We assume that usual insurance risks ( iP ) and other risks ( hP Q  ) are independents. We 

denote    0,
iF PBEL T E F  . Conditioning to F means conditioning to financial risk (that 

is risk that affects sr ) and therefore we get 

      

             
0

0,
iF P

T

BEL T E VR T T F

VR t t S t t dt S T VR T T

  

  

   

      
 

One can observe that       1
iP

tPM t E VR t F
 

  . We assume initially that  S t  (and also 

 t ) does not depend on the financial environment and is deterministic. This assumption 
will be released in section 3 where the issue of inclusion of financial ratchet will be discussed. 
The best estimate of the contract is 

    0 0, ,
hP Q FBEL T E BEL T

 . 

This involves knowing how to calculate 

               
0

0 0exp
h

t
P Q P

sE VR t t VR E r u r u du VR t
 

 
  

        
  
 . 

Different approaches are possible to model the spread between the yield of the contract and 
the risk-free rate      st r t r t    so that the coefficient  t  is computable. Therefore 
having an explicit expression for  t  leads to a simple expression for 

        0PE VR t t VR t


     and the best estimate equals 

             
0

0 0,
T

BEL T VR S t t t dt S T T  
 

   
 
 . 
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To avoid the potentially tedious calculation of the integral above, in practice we use the 
discretized3 version, where the usual notation xl is used for  S x  

       1
1

1 0 0

0 0,
T

t T
t

t

l lBEL T VR q t T
l l

 




 
      

 
 . 

So calculating the best estimate of the contract comes to knowing how to calculate the 
coefficients  t . 

c) DETERMINATION OF EXPLICIT FORMULAS 

The process  t  is modeled by assuming directly that the dynamics under the probability 

P  of this process is an Ornstein-Uhlenbeck process 

      d t k t dt dB t   


    . 

The market often retains a target rate of revalorization close to the risk-free rate (TME, 10-
year OAT, etc.); this fact motivates our choice. Moreover, the revalorization rate by the 
contract is determined by the return on assets (its expectation equals to the risk-free rate under 
a risk-neutral probability) and also smoothing mechanisms induced by accounting principles. 

In this model, we know that the variable    
0

t

z t u du   is Gaussian with expectation and 

variance as follows (cf. PLANCHET and al. [2011] p.434 or BRIGO and MERCURIO [2006]) 

   
 

0

1 kte
m t t

k
  



 


    ,    

2 22

3 2

11
2

kt
kt ev t e t

k k k
   

  
    

 
 

We denote  
1 xex

x



 , so that 

      0m t kt t   
 

     ,       
2 2 1

2
tv t t kt kt

k k
  

 
    

 
. 

We thus find      
 
2

exptzP v t
t E e m t




 

   
 

. 

                                                 

 

3 We consider the cash flow paid at the end of period  1,t t  for the exits before the term. 
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Coefficients  , ,k  
  are yet to be determined. The parameter k can be seen as the 

responsiveness of the insurer to adjust its paid rate and 
 , the volatility of the spread with 

the risk-free rate, provides information on the stability of the policy rate paid by the insurer. 

The best estimate is an increasing function of 
  and decreasing with k. We choose 10T   

and a constant annual rate of ratchet of 4%. Assume that 0 0 50, %    and that 0

 . 

Under these conditions we obtain a behavior of the best estimate depending on the volatility 
of the rate of return of the contract and the reaction speed of the insurer having the following 
form 

Fig. 1 : Best estimate illustration 

 

We observe that when k is large enough (i.e. when the responsiveness of the insurer is 
important), the best estimate is relatively stable in terms of volatility and is slightly less than 
one. This reflects the fact that the expected earning of the contract is lower than the risk-free 
rate. In contrast, when the insurer is more constrained (i.e. k is small), the impact of volatility 
is important. The best estimate is of course an increasing function of  . The calibration of 
these parameters is not simple and will be the issue of further work. 

3. MODELING OF THE SURRENDER 

Assume now that the surrender is decomposed into the sum of a structural (idiosyncratic) and 
a cyclical component,       i cu u u     .  is now random. 

The conditional expectation of the sum of the discounted stream of benefits 
   VR T T        can be written as follows, assuming that  0 1VR   

                
0

i
T

PE F S t t VR t t dt S T VR T T      



  

 

Best estimate calculations of savings contracts   Page | 7 

 

Denoting    
0

exp
t

i iS t u du
 

  
 
  this formula is written 

              

      

0 0

0

exp

exp

i
T t

P
i i c c

T

i c

E F S t t t u u du dt

S T u u du

     

  

 
      

 

 
    

 

 



 

The calculation of     
nh h h iP Q P Q PE E E F

     not only requires to calculate 

      1
0

exp
t

P
ct E u u du



   
  

      
  
  

but also 

         2
0

exp
t

P
c ct E t u u du



     
  

      
  
  

so that 

                1 2 1
0

0 0,
T

i i iBEL T VR S t t t t dt S T T   
 

      
 
 . 

We use for  u  (cf. c)) an Ornstein-Uhlenbeck process and we use the simple linear 

function for the surrender     c u u       with 0  . So we model the effect of 
declining surrender when the accumulation rate is higher than the risk-free rate and an 
increasing one otherwise. We choose not to limit the surrender level (upward or downward). 
This means that we consider an effective risk management system that will reduce the 
volatility associated with the process  u  when necessary. 

In this case,         1
1

0

1exp t

t
ZP Pt E u du E e

  
  


  

     
  

  with Zt  Gaussian random 

variable     N m t v t, . This leads to 

       
 

 
 2 1

1 11 1
2 2

v t v t
t m t m t  

   
          

   
exp exp
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We shall still compute the term        2
0

1exp
t

Pt E t u du


    
  

      
  

 . We notice 

that 

 

 
   

         

1

0

2
0

1

1      1 1

exp

exp

t
P

t
P

d t dE u du
dt dt

E t u du t






 


    



  
    

  

   
        

  





 

and we obtain the expression 

   

 
 

       
 

     

2 1

2

1 2 2

1
1

        1 1
2 2

1        
2

dt t
dt

v td dm t v t m t
dt dt

t m t v t


 




  

 

 


   
            

   

 
     

 

exp . 

We denote    
 

  2

1 1x x
x

xe edx x e x
dx x x

  

 


 

    and find the following 

expressions of the coefficients 

        

    

2 0

0                          

dm t m t kt
dt

k kt t

   

  

 



    

      

            

       

2

2

2

21 1 1
2

                        + 1 2
2

dv t v t t kt kt
dt k k

t kt kt kt
k






   


  

 
         

 

    
 

With 10T  , a constant annual rate of surrender 4%i   and 2   we obtain the following 
values (with k varying) for the best estimate 
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Fig. 2 : Best estimate illustration 

 

This chart shows that taking the cyclical surrender into account highly reduces the margin of 
the insurer. We also notice that 

 it introduces significant volatility when   takes values greater than 8%; 
 volatility is neutralized when the insurer is reactive (for k greater than 40%).  

The symmetric model proposed above simplifies computations and we also find it more 
realistic. We can change the model by taking into account an asymmetric cyclical component 
of surrender. It can be done simply by assuming  u  proportional to the negative part of the 

difference between the accumulation rate and the risk-free rate    c u u  


      . 

4. BALANCE SHEET MODELING AND SCR COMPUTATION 

Here we use the formula set out above to calculate the best estimate from the mathematical 
reserve. For this we use the Markovian character of . Then at time t we have 

     BEL t T t T PM t , , with 

                 1 2 1, ,, , , ,
T

i t i i t
t

t T S u u t u t t u t du S T t T t              

 
We denote   ,j t u   the coefficient  j u  computed above with  t  the new initial 

value for the (markovian) process  u t u   conditioned by the information at time t. 

We assume that one has a model able to generate paths (under the historical probability) of 
 sr t  and  r t . There is therefore a direct assessment of  ,BEL t T  at time t using  PM t  and 

the coefficients i , 1 2,i  . These coefficients depend on the path only through the last value 
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 t , because of the Markovian assumption. To resume, this is how we build the empirical 

distribution of  ,BEL t T . In practice we will now use the expression 

           

  

1
1 1 2

1

1

, , , , ,

,

T
u

u
u t t

T

t

lt T t T t q t u t t u t
l

l t T t
l

      

 




 

      

  


 

a) DYNAMICS OF THE RISK FACTORS 

We use the Vasicek model (cf. PLANCHET and al. [2011] or BRIGO and MERCURIO [2006]) for 
the short rate and the Black & Scholes model for the insurer's asset value 

      r r rdr t k r r t dt dB t


     

     21A A A r A Adr t dt dB t dB t        

        
2 2

22

1
11

, ,
A

s a s ad t k t dt dB t dB t

  

   
   




 
    


 

with 0, , , , , , ,A r Ak r k      
 

   and  1 1s a  , ; . , ,A rB B B  are 3 independent 

Brownian motions under the historical probability fP . 

In applications, the Ornstein-Uhlenbeck processes are discretized with their exact 
discretization, following BAUER and al. [2010]. With this specification, the correlation 
between the short rate  r t  and the excess return      St r t r t    is null. This assumption 
is made for the sake of simplicity and could be improved by adding a parameter to the model. 

b) PROJECTION MODEL OF THE BALANCE SHEET 

Here we describe the dynamics of the asset value  A t  and cash flows of benefits  F t . We 
assume here that the non-financial risks are perfectly pooled. Initially, we will also assume 
that no new contract is signed. The transition from time t to 1t   is therefore based on the 
following recurrence, written under the historical probability 

                21 1 1 1 1A A r r A A AA t A t B t B t B t B t F t          exp      

where we denote  1F t   the benefit stream over  1,t t  . We assume that the benefits are 
paid at the end of the year. 

Note: in the case of investment loss we could also use the relation 
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              
 
 

21 1 1 1

1
1

A A r r A A AA t A t B t B t B t B t

F t
PM t

        

 
   
 

exp    

 

We will use here the first of these expressions, knowing that the implementation of one or the 
other is equally complex. Denoting       i cu u u      for the exit instantaneous rate 
we have 

               
1 1

1
t t

t t

F t VR u S u u du PM u u du PM t q t 
 

      .
 

Because     c u u    , this leads to 

           
1

00 0

exp exp exp
t t t

i i
u

S t u du S t u du S t u    




     
          

    
   

and  
   

 
    1

1 1 t
i

S t S t
q t q t e

S t
  

     . We derive from those equations the benefit 

stream over  1,t t   

           

       

1

00

1 1 1

            1 1

,

,

exp
t

ti t
i

ui

t
i

l
F t VR t u q t e

l

PM t q t e

 

 










 
        

 

    


. 

The approximation used for the asset side is 

        

         

2

1

00

1 1 1 1

1 1,

,

exp

exp

A A r A A

t
ti t

i
ui

A t A t t t

l
VR t u q t e

l
 

     








       

 
       

 


 

        
       

21 1 1 1

1 1

exp A A r A A

t
i

A t A t t t

PM t q t e 

     



       

    

. 

The mathematical reserve evolves as follows 
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          

           

1

1

            1 1

exp

exp

t

t

i

PM t PM t r u u u du

PM t r t t q t

 

 

 
     

 

     

  

which allows us to compute      1 1 1, ,BEL t T t T PM t     , which is a random 
variable, conditionally on the available information at time t.  We can yet compute the net 
asset value at time t +1,  1 1 1,t tE A BEL t T

 
    and we get 

 

       

         
           

21 1 1

1

1

1 1

1 1 1, ,

A A r A Ar t t t

r t r t t
t i

t
i

A t e

E e PM t e q t e

PM t e q t t T t

     

 

 
 

     

 





 
 
        
 
 
       
 

. 

Once this value is calculated, it remains to compute the SCR. It takes no account of the risk 
margin and it leads to the following equation (cf. BAUER and al. [2010] for the justification of 
this approximation) 

 
1

1 0 5

t

t

r u du

t t t tSCR E VaR E e







 
   

  
 

; . % . 

We approximate the above expression with   1 0 5r t
t t t tSCR E VaR E e


   ; . % , which leads 

to the following expression for the SCR in t 

       

         
           

21 1 1

1

1 1

1 1 1, ,

A A r A Ar t t t

r t t
t t t i

t
i

A t e

SCR E VaR PM t e q t e

PM t e q t t T t

     

 

 
 

     

 



 
 
        
 
 
       
 

 

Since conditional on information available at time t   1 1, ,t T t    is an algebraic sum of 
non-independent log-normal variables, it is not simple to analytically compute a quantile of 
this distribution (cf. GUIBERT and al. [2012] for a discussion of this point). 

Note: in the above equation we considered only one generation of contracts. In the more 
realistic case of aggregation of different generations of contracts, the term 

                1 1 1 1, ,r t t
iPM t e q t e q t t T t 

 
 

         in the equation defining the 

SCR is replaced by a term of the form 

                1 1 1 1, ,r t t
j i j

j I
PM t e q t e q t t T t 

 
 



        . 
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Conditionally on the status of risk factors in t, we are able to calculate the empirical 
distribution of the net value of assets at t +1 and derive an empirical estimator of the SCR, 

then the one of the coverage rate t
t

t

A
SCR

  . One can also note that where an amount of 

contributions  C t  is set at time t, on that date, the asset is therefore increased by  C t and 
liabilities growth with the amount of the best estimate. Consideration of future subscriptions 
is thus easy. This case will not be considered in the sequel, which simplifies the illustration. 

c) NUMERICAL APPLICATION IN THE CASE OF A RUN-OFF PORTFOLIO 

Numerical applications are built with the R software (R DEVELOPMENT CORE TEAM [2012]). 
We use the following exact discretization for the stochastic processes:  

 1
1  1

2

-
- -

r
r r

k
k k

t t r r
r

er r e r e
k

 
 


       , 

 
2 2

, ,
1 22

11 1  1
2 1 21

k k
s a s ak k

t t A
e ee e
k k

 

 

  

 

  
      



 
 

 

  
        


, 

where , ,A s   are realizations of 3 independent and identically distributed standard Gaussian 
variables. We do not need to discretize Ar , because the asset value is directly projected with 
the equations presented in the section above. 

A numerical application is performed by retaining the settings listed in the annex (the 
parameters used for the asset allocation are equivalent to consider a 12% equity and 88% 
bonds allocation). On this basis the projection of the following variables is performed over the 
next 5 years: 

 the value of the mathematical reserve; 
 

 the benefit stream; 
 

 the market value of the assets; 
 

 the simulated paths of financials variables (this information is required for the 
ORSA process). 

At last, this allows projecting the evolution over the next 5 years of the Available Financial 
Resources (AFS) represented via the following graph 
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Fig. 3 : Evolution of the cdf of the AFS for a run-off portfolio 

 

Based on the distribution of the balance sheet of the company over the next 5 years, we put in 
place an ORSA process. To do this, we retain an annual 5% quantile (for the jth year we will 
thus be positioned on the quantile level1 0 95, j ). This leads to empirically estimate two 
quantities: 

 The empirical 1 0 95, j quantile of the AFS for every year j of the next 5 years; 
 SCR value associated with each quantile. 

The estimation is done in three steps: 

 Based on the knowledge of the dynamics of the interest variables we simulate 10 000 
realizations of the balance sheet over the next five year ; 

 Based on the knowledge of the distribution of the balance sheet relative to the jth year, 
we select the trajectory corresponding to the empirical 1 0 95, j quantile; 

 Conditionally on the information on the selected path, we calculate the empirical 
quantile at 0.5% of the AFS for the year j +1. This provides the SCR associated with 
the trajectory withholding for the jth year. We then deduce the quantile coverage ratio 
of the jth year. 

Withholding a quantile based solely on the value of AFS leads to unstable results. The AFS is 
in fact the imperfect synthesis of the two main variables of interest, the assets and liabilities. 
Therefore, the three steps above are followed a hundred times, and ultimately we compute the 
empirical mean of the different simulated quantiles. Hereby the results we find: 

Tab. 1 : Evolution of the coverage ratio (AFS/SCR) 

Time 0 1 year 2 years 3 years 4 years 5 years 

165 % 137 % 141 % 150 % 161 % 171 % 
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The 1 0 95, j quantile being empirical, we test the convergence of the result by gradually 
increasing the number of simulations. The following graph reflects this convergence (results 
are obtained on the basis of 500 simulations for the quantile and 10 000 for the SCR). 

Fig. 4 : Convergence of the coverage ratio 

 

5. CONCLUSION 

Having a closed formula to go from the mathematical reserve to the best estimate evaluation 
of the reserve improves dramatically the performance of calculations. Being easily 
reproducible, it facilitates the process of audit and control. 

We propose in this work a model based on the idea that a (French) saving contract is mainly 
non-hedgeable, because of the accounting rules effect on the revalorization rate of the 
contract. With this observation, the hedgeable part of the flows is « absorbed » by the 
discounting process, which leads to very simple calculations. 

This approach models the behavior of the insurer with a parameter k - representative of its 
ability to react to the market - and that of the insured with a parameter η – representing its 
responsiveness. We can make an implicit computation of these behavioral parameters. 
according to the results given by an evaluation as part of a traditional ALM model initially to 
calibrate the model. This will be the subject of further work. 

This approach also provides us with a have a powerful tool for making projections of SCR 
along a « critical path ». This is especially interesting when seen as part of an ORSA process. 

This first analytical framework can then be expanded to capture more complex effects, such 
as the wealth effect of the insurer through its management of unrealized losses. This will be 
the subject of future work to jointly model the book value and market value of assets. 
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7. APPENDIX: COMPLETE PARAMETERS SET 

Parameters 

Risk free rate 

0 0 03.r   Initial short rate 

1 0 05.r   Long term risk free rate under real word 

0 18.rk   Speed of reversion of the risk free rate 

0 02.r   Volatility of the risk free rate 

Rate of remuneration for the contract 

0 0 005.   difference between the yield of the contract and the risk-free rate  

1 0 005.   Long term mean level of the difference between the yield of the contract and the risk-free rate 
under real word measure 
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0 3.sk   Speed of reactivity of the insurer 

0 008.s   Volatility of the distance without revalorization risk 

Log return of the asset 

0 04.a   Mean 

0 06.a   Volatility 

Correlation 

0 95, .a s   Linear correlation between the rate served and the rate of return of the asset 

0 25, .a r   Linear correlation enters the rate without risk and the rate of return of the asset 

Parameters of projection 

10T   Duration of the contract 

0 04.i   Rate of structural lapse 

2   Slope of cyclical lapse 

10 4^sN   Number of simulations 

5plan   Duration of the strategic plan 

0 95.ORSAq   Level of the annual Quantile for the ORSA 

0 500N   Number of simulation allowing to calculate empirically the profits ORSA 

 


