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portfolio. The formalistic results are exemplified in a series of numerical studies.
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1 Introduction

From a specific set of scenarios we find the scenario that leads to the worst-case, i.e. largest,
value of future obligations. The idea of such worst-case scenarios has a wide range of appli-
cations in life insurance pricing, management, and regulation. They include settlement of
premiums and surrender values as well as calculation of risk margins and solvency capital
requirements (SCR). In particular we draw the attention to the scenario-based standard
formula in Solvency II, see Steffen| (2008) for an overview of the Solvency II project. So far
it has been difficult to say something qualitatively about the relation between a standard
scenario and the original Value-at-Risk-based SCR. We generate scenarios such that SCRs
based on these scenarios are proven sufficient under the Value-at-Risk measure within a
given model. As input to our calculation, we take a set of interest and transition rates such
that the probability of realizing interest and transition rates within that set is bounded.
For such a set we calculate the scenario that maximizes the reserve. We do not generally
address the difficult but interesting question of detecting such a set although we exemplify
possible sets in some examples.

Our results are applicable to an inhomogeneous portfolio of contracts. Then the worst-case
scenario generated is worst-case for a whole portfolio with different policyholder ages and
contracts. This makes the approach particularly useful in the discussion about portfolio
SCRs. The results can qualify this discussion in two dimensions. First, for a regulator
who wants to develop a stress scenario-based SCR. we provide a scenario corresponding
to bounds on shortfall probabilities. This qualified standard formula should be derived
for a stylized market-realistic portfolio. Second, an insurance company can replace the
standard SCR formula by a so-called (partial) internal model-based calculation and still
exploit advantages working with scenarios. Our results show how such “internal stress
scenarios” can be derived.

In relation to recent academic literature on worst-case scenario generation, we emphasize
that our stress scenarios are deterministic in the sense that e.g. the portfolio worst-case
mortality intensity at a future time point is calculated today and will not depend on the
survivors of the portfolio at that future time point. This means that we are, briefly speak-
ing, finding optimal deterministic processes maximizing an expectation in a stochastic
environment. This is a non-standard exercise that contains methodological and computa-
tional challenges. The upside is that, once they are overcome, the resulting scenario can
be better understood, communicated, implemented and extrapolated for usage in other
(similar) portfolios. The idea to look for deterministic worst-case intensities is in sharp
contrast to e.g. |Li and Szimayer| (2011} 2014) who, in a different framework, also study
worst-case intensities. They, however, use more standard stochastic control techniques to
derive intensities that are adapted to the development of the contract under study. This
development amounts, in their cases, to the development of asset prices but, in a more
general setting, it could be the number of, or even the names of, survivors in a portfo-
lio. Such adapted scenarios may be useful for other applications but not necessarily for
solvency issues. Thus, the conceptual innovation in relation to [Li and Szimayer| (2011}
2014)) is that our worst case is deterministic and its derivation therefore draws on other
techniques.

The present work extends the results of Christiansen and Steffensen| (2013) in the following
way: Like us, they search for optimal deterministic scenarios and obtain simple formulas
for these but in a quite restricted class of models. The class is defined endogenously
by requiring that certain argmax operations over transition intensities are constant with



respect to the transition probabilities they generate, see|Christiansen and Steffensen| (2013,
Proposition 4.1 and 4.2). The work in this paper is very much inspired from the structure
of problems and solutions in that article, but we succeed in finding the worst-case scenario
also outside their restrictive assumptions. This allows for studying much more realistic
and important cases like a hierarchical disability model or a model for a portfolio of
heterogeneous contracts hit by the same worst case. Thus, we develop a powerful tool
for various applications while sticking to the natural but challenging idea of |Christiansen
and Steffensen (2013) that the worst-case should be deterministic. Thus, the innovation
in relation to |(Christiansen and Steffensen| (2013) is that we find, by means different than
theirs, the worst case for interesting products and portfolios that they rule out.

In order to show how the studies in this paper can be applied to solvency calculations
we choose to give the reader, already here in the introduction, a glance of the formalistic
argument. Details can be found in|Christiansen and Steffensen| (2013). For (real, unknown)
interest and transition rates (¢, 1), we want to find deterministic interest and transition
rates (¢, 1) such that for the liabilities L, it holds that

P (L(t,6,70) = L(t,6,1)) = 1 - a, (1.1)

where a € [0,1). That is, we want to find a deterministic calculation basis such that
the liabilities calculated with this basis with a certain probability are larger than the
liabilities calculated with the real (stochastic) basis. This can be obtained by choosing
(¢, 1) = argmax g ,yenr L(t, ¢, p) for a set M such that P((¢, u) € M) > 1—a. We do not
pay any attention to how the set M is formed, except for in a few numerical examples.
The object of study in this paper is, given a set M, to calculate the argmax, (¢, i1).

As shown in (Christiansen and Steffensen (2013]), we can use this to obtain an upper bound
for the SCR given by
sup  {L(t, ¢, )} — L (t, "%, u°"),
(p,m)eM
where ¢B® and pB® are best estimates for the interest rate and transition intensities,
respectively.

The quality of an SCR based on a standard stress scenario compared to a Value-at-Risk-
based calculation has been intensively discussed in the literature. Doff] (2008)) analyses,
critically, the Solvency II proposal and the shortcomings of the standard stress model,
which is also discussed by Devineau and Loisel| (2009)). Specific attention has been given
to longevity risk and Olivieri and Pitacco (2008]) study the pitfalls of approaching longevity
risk by means of stress scenarios. A comprehensive numerical study that compares the
stress scenarios to the Value-at-Risk calculation can be found in [Borger (2010). To the
authors’ knowledge, all comparative studies are quantitative in the sense that the various
principles for SCR calculations are numerically related to each other. If the stress-based
SCR is significantly smaller than the Value-at-Risk based SCR, the whole idea of inducing
financial stability from the standard formula may be criticised for being an optical illusion.
We distinguish ourselves from this quantitative discussion by searching for a stress, such
that the SCR derived from this stress scenario is at least as large as the SCR that can
be derived from a Value-at-Risk approach. Thus, rather than criticising the idea of stress
scenarios, we admit its advantages and seek to qualify the discussion about what the stress
scenarios should look like. Our study is general enough to help answer this question no
matter if the unit is a contract or a portfolio.

The paper is organized as follows: In Section [2] we introduce the insurance market and



get a representation of the probability weighted reserve. In Section |3| we obtain worst-case
scenarios and reserves for a single policy and describe numerical methods which are needed
for the numerical calculations of these quantities. In Section [4] we extend the theory to
cover a portfolio of policyholders, and finally we present some numerical calculations for
both single policies and portfolios in Section

2 Modelling and valuation of an insurance policy

Let T be a fixed finite time horizon and (2, F, (F(t))o<i<7, P) a filtered probability space
with filtration satisfying the usual conditions of right-continuity and completeness. Let
X be a pure jump process defined on this probability space with finite state space S
which we assume consists of n states. The process (X (t)),c[o ) represents the state of a
policyholder. We do not assume a deterministic starting value for X but only a starting
distribution, which we denote 7. This enables us to easily calculate the worst-case reserve
for a homogeneous portfolio of insurance contracts, where each policyholder can be in
different initial states like “Active” and “Disabled”. This is a simple special case of the
more general theory for portfolios presented in Section [d] We denote by J the transition
space of X defined by J = {(j, k) € 8?|j # k}.

Following the lines of Norberg| (1999), we assume that the interest rate intensity ¢ is

piecewise continuous and that fOT ¢(s)ds is finite. We define a discounting function v by
the following forward equation:

d
o) = —uo(), wv(te) =1, (2.1)

where % is not necessarily the initiation time of the contract. One can intuitively think
of ty as 0 but we introduce the notation £y in order to be able to accurately formulate the
verification lemma. The solution to (2.1]) is given by

t
o(t) = e~ 00007
and the discounting factor for the time span from s to t is given by

v(s,t) = ;}((3 =e” I ¢(r)dr

We let the n x n transition matrix for X be denoted by p, which is a function with two
arguments. That is, for tg < s <t < T we have that

p(s,t) = (P(X(t) = kX (s) = 7)) j p)ese -
By © we denote the corresponding n x n intensity matrix. It is well-known that p is
determined by Kolmogorov’s forward equation:
0
ap(sv t) = p(S, t),u(t), p(’S? S) =1Ip,
where I,, is the n-dimensional identity matrix.

With a little abuse of notation we denote by p (a function of one variable only) the marginal
distribution of the random pattern of states:

p1(t)

t
o= "7,

pa(t)



where p;(t) = P(X(t) = j). The forward equation for p is given by

Splt) = u"(Ople),  plto) = 22

where 7 is a given initial distribution over the n states and u'*(t) is the transpose of yu(t).
Equation follows by Kolmogorov’s forward equation by using that p; = > . s mipij,
which gives us that the dynamics of p; are equal to p; times the columns of p. This is
exactly equal to u'*(¢)p(t).

We consider an insurance contract with the following type of payments:
1. b;(t) is the rate of payments in state i at time ¢.

2. b;;(t) is a lump sum payment payable upon transition from state i to state j at time
t

We denote by B;(t) the accumulated payments in state i up to time ¢ and by B(t) we
denote the present value at time ¢ of future payments of the contract. We assume that all
the functions b;; and B; have bounded variation on [0, 7] and that the functions b; and b;;
are C! on [0, 7). The latter assumption can easily be relaxed to piecewise C'' but this will
result in cumbersome notation, since we need to deal with extra boundary conditions.

To keep the notation simple, we assume that no lump sum payments are paid out while
sojourning in a state. That is, for all ¢ € [0,7] we have that

AB;(t) = B;(t) — Bi(t—) = 0. (2.3)
However, the results of the paper can easily be extended to the case, where assumption
(2.3) does not hold.
We are now able to define the statewise prospective reserves. The statewise prospective

reserve in state j € S is given by

Vi(t) = E[B(1)[X(t) = Jj]

T
—Z/ v(t, w)pjr(t,u) | br(u) + Z it ()b (w) | du.

kes 't l€S:1£k

The standard Thiele’s (backward) differential equation for the reserve is given by

SVI0) = i)+ oOVi0) — S0 (birlt) + Vilt) ~ Vi) mislt), Vi(T) =0, (2.0
keS:k+#j

where the boundary condition follows because of assumption (2.3). Note that the integral
form of (2.4) is known as Thiele’s integral equation of type II. With defining a mapping
W : [to, T] x (0,00) x [0,1]I5] = R by

W(t,v,p) ::Uzpj‘/j(t)? (2.5)
JjES



the expected present value at time tg of the future payments between time ¢ and time T’
equals

W(t,o(),p(t) = Y mELOBE)IX(t) =]

jES
= ()Y pi()Vi(D)
jes
= Z/ pr(u + ) bu(wpw(u) | du. (2.6)
kes IeS Ak

Here, the last equality follows from the Chapman—Kolmogorov equation and by collecting
the discounting terms. The functions p and v in (2.6]) follow from (2.1)) and ( and the
initial values v(t) and p(t).

3 Calculation of the worst-case reserve

In this section, we derive the worst-case scenario for the probability weighted reserve,
7V (to), which is related to W by . First, we establish a verification lemma and give
a heuristic argument for the main ingredients. Second, we show existence of a worst-case
scenario. Third, we translate the verification result for the probability weighted reserve W
into a corresponding result for the statewise reserves V; in a corollary. Finally, we outline
two numerical methods for calculation of the worst-case reserve.

3.1 Verification lemma

We note that 7%V (tg) = W (to,v(to), p(to)) = Wi(tg,1,m). This is useful since dynamic
programming applies to W and not to 7#**V. This allows us to attack our optimization
problem by maximizing W for all future time points, whereas V;,j € § is not in itself
maximized for ¢ > tg.

In the following, we search for the worst-case reserve (the optimal value function) with
respect to a set M, where M C LIHJ| ([to,T]) is a set of integrable interest rate and

transition intensity paths. A set M belongs to L}Hj' ([to, 1)) if E};\J\ ft:OF |fi(s)|ds < 00
for all f;(t) in M;(t). The “slices” M (t) of M,

M(t) = {(o(t), u(t) (&, 1) € M},

describe the parameter space at time ¢t. We start by establishing a classical verification
lemma.

Proposition 3.1. (Verification lemma) Let W be a solution to the partial differential



equation

0 0 -
aW(t v p) (Z)(t,’U,p)U%W(t,’U,p) + ];gpk Ubk(t)

0 - 0 - -
+ Z ﬂkl<t7vap> (Ubkl(t) + aﬁW(t,'U,p) - 8W(tvvap)> 9 W(T7 Uap) = 07
l€S:1#k Pl Pk

(8(t,0.9), 71, v,p) = argmas 3 fo W(t,v,p) + 3 pi [ vhelt)
(f,m)eM(t) keS

0 0 -
+ > mp <vbkz am 2-W(t,v,p) - mw(ﬂv,p)>

1€S:1#k
(3.1)
Furthermore, let the ordinary differential equation system
d VTN
0 = Zo(t) + d(t,5(0) p(1) 0 (1)
d (3.2)

0=—pi(t) = > (A (t,0(t), BO)PR(E) — Agne(t, 0(), B())B; (1)), G €S,

d¢ keS:k#j

have a unique solution on [s,T| for any initial condition (v(s),p(s)) = (v,p) at any time
s € [to, T] and any pair (v,p) € (0,00) x [0,1)5]. Then

W(s,v,p) = sup W(s,v,p;p, )= sup vy p;V;
($.u)EM ($op)EM JEZS (3.3)

for all triples (s,v,p).
Proof. See Bertsekas (2005 Section 3.2). O

Note that the notation “; ¢, in W(s,v,p; ¢, 1) and Vj(s; ¢, 1) emphasises that W and
V; depends on the entire processes ¢ and .

In the following, we heuristically derive the differential equations in Proposition We
start by combining two different differential equations for W for a given (¢, u). First, the
derivative of W with respect to t, using ([2.6)), is given by

SW(to0).p0) = - o) (50 + Y bu@ua® | G4

dt kes 1€S:14k

Second, we can also consider W as a function of three variables with dynamics given by

V(600000 =5 Wt 0(0).50) + 5 W (e 00l ( 500 -

(00, 000) (000



where

0 0 0
vov= (2w Zw.. Zw)
P <5P1 Op2 Opn )

By inserting the differential equations for v(¢) and p(t) (given by (2.1) and (2.2)), respec-
tively) into (3.5)), combining with (3.4]) and rearranging the terms, we obtain the following
differential equation

0 =W (1, 0(0) (1)) ~ D) W, (1), (1)

F Xm0 3 ste) (v0hua(0) + W) pl0) ~ W, o(0)p(0) )

keS €S 1k Opr,

(3.6)

with terminal condition given by W(T,v,p) = 0. Choosing (¢, 1) such that the time-
derivative is as small as possible at each time point and also using this (¢, ) in the
differential equations for v and p give us the equations that characterize the worst-case
reserve. We obtain the differential equations for ¥ and p by inserting the worst-case interest
rate into and the worst-case intensities into a coordinate-wise version of . Hereby,
we have heuristically derived the system of differential equations in Proposition

3.2 Existence

We now turn to the question of existence of a worst-case reserve.

Proposition 3.2. (Ezistence of a worst-case scenario) Let M be a compact subset of
Lﬁ"ﬂ ([to, T]) which contains only nonnegative interest rates ¢ and nonnegative transition
intensities i1, (j,k) € J. Then for each (t,v,p) € [to, T] x (0,00) x [0, 115! there exists
a mazimizing argument (¢, i) € M for which W (t, v, p; ¢, i) = W (t, v, p).

Proof. Since ¢ and pji, (j, k) € J are nonnegative, we necessarily have |v(t)| < 1 and
Ip;j(t)] <1 for all t and j. Therefore, the reserves Vj(t) are uniformly bounded by

T
Vol <> [ (el Y buls)()ds < €

kes 't kES:I£k

for a finite constant C' (which is independent of j, ¢ and u) since the functions by(¢) and
by (t) are bounded and M is a compact subspace of L}Hjl ([to, T]). Consequently, on the

set M the mapping W (¢, v, p; ¢, ) has the uniform upper bound given by

W(t,v,p;¢,1) < vy p;C.
JjeS
Furthermore, Christiansen, (2008, Theorem 4.4) showed that the reserves Vj(t) are Fréchet
differentiable with respect to the cumulative intensities ¢ — fti) ¢(u)du and t +— fti) p(u)du

in the total variation norm. Since the operator that maps the intensities to the cumulative
intensities is continuous and since the Li-norm of the intensities equals the total variation



norm of the cumulative intensities, we can conclude that Vj(¢; ¢, ) is continuous with
respect to (¢, ). Because of the linear representation , the mapping W (t, v, p; ¢, u)
is continuous in (¢, 1), as well. From the boundedness and continuity of W (¢, v, p;-,-) on
M and the compactness and completeness of M we can finally conclude that there exists
a maximizing argument in M. ]

Proposition gives existence of a worst-case reserve but we do not say anything about
uniqueness and existence of a solution to the system of differential equations given by
. What type of solution we can possibly expect crucially depends on the set M. We
do not dig further into this question in this exposition.

In some examples later on we will construct sets M by specifying the t-slices, and the
1+T \

following lemma will help that we obtain sets that are compact in L

Lemma 3.3. Let B, S be subsets of L}HJ' ([to, T]) where B is a bounded and closed set
and

s:= {1 e L™ (o, 7)) -
(3.7)
there exists a version of f with variation norm not greater than C’}

for some C < o0o. Then the closure of BN S is a compact subset of B.

Proof. Because of Tychonoff’s theorem, it suffices to show the lemma just for the space
Li([to,T]). We let h € IR. Using that all elements in S have a version that has finite
variation, we can, with the help of Fubini’s theorem, show that

T
sup / |f(t+ h)Leyn<r — f(t)|dt < sup // d|f|(s
to tt+h

feBnS Jtg feBNS

< sup / / dtd|f|(s
feBmS [to,T+h]

where f(t) := 0 for ¢ outside of [tg, T] and where |f| := f4 + f— for minimal non-decreasing
functions f, f— with f = f4 — f_. Since Ch converges to zero for h — 0 (uniformly in f),
and since B is bounded, from the Kolmogorov-Riesz theorem we can conclude that BN .S
is pre-compact. Hence, the closure of B N S is compact. Since B is closed, the closure of
B NS must be a subset of B. O

In the following, we approach the differential equations by numerical methods. The exis-
tence of a worst-case reserve given by Proposition [3.2] together with convergence in various
numerical calculations indicates that we do approximate a worst-case reserve.

3.3 Results for statewise reserves

We have throughout the section worked with the probability weighted reserve W. In order
to prepare for the numerical calculations, we reformulate the verification theorem in the
following corollary in terms of the statewise reserves V. The result follows directly from

Proposition and ((2.6)).



Corollary 3.4. Let the assumptions of Proposition be fulfilled, and let the ordinary
differential equation system

%Vk( t) =—b(t) + Vi(®o(t) — D (bult) + Vi(t) = Vi) ra(t),  Va(T) =0,
IES T#k

d_ N T _

o) =~ 0060, o(t) =1,

Splt) =~ B OR), plto) =
(50), 1) = vz { - I

) me®) D mu (br(t) + Vi(t) — Vi(t)) }

keS €S 14k

have a unique solution V = (Vl, e Vn)tr. Then

o(OP" V() = o(t) Y Bi(OVilt; 6, ), (3.9)

(¢, N) jES
i particular
tr
V(tg) = sup ;i Vi(to; &, 1)
> 610

By solving the system we are also able to calculate W and V. Note, we have implicitly
assumed that the interest rate and the intensities are not allowed to depend on the current
state of the Markov chain. We do not know p(7") and (7T") but if we make a guess of the
values p(T") and o(T") (this is a guess of dimension (n+1) in total) and the guess is correct,
we get that p(tp) = m and v(tp) = 1. The problem is that we do not know the boundary
conditions for all the differential equations at the same time point. This implies that we
cannot use standard iterative, numerical methods to solve the differential equations. We
now outline two methods, which can be used to obtain results numerically.

Shooting method: One way to overcome problems with boundary conditions at different
time points is to apply the shooting method, see e.g. Orava and Lautalal (1976). Here, we
need to guess terminal conditions for ¥ and p and then “shoot” until we hit the “right”
starting values for v and p. The shooting method is a method aiming at updating these
guesses in order to obtain the right starting values as fast as possible. The system of
ordinary differential equations given by consists in total of 2n + 1 equations; n + 1
forward equations and n backward equations. The standard way to choose whether to
guess for the missing starting or terminal values is to make a guess of the lowest possible
dimension. In the present case, this approach implies that we should guess the starting
values for V; and solve the equation system forward. Note however, that the differences
between the two choices for the present case are minimal. Assuming that we make initial
guesses x7,o and yr o for the terminal values of p(T") and v(T") we obtain results p*7:0(tg)
and ©YT0(tp), which we hope are close to m and 1, respectively. One should of course
choose x7 in the set [0,1]™ and y7 o in the set [0, 1] since they are transition probabilities
and a discount factor. Now the aim is to find roots for the function f given by

o= () (53)

10



We can find these roots by choosing some starting values and apply a standard algorithm
like Newton’s Method to update the guesses. Hereby, we obtain a series of terminal
conditions (z7,;,y7r;), i = 0,1,.... We stop the algorithm, when each entry of f(z7;,y7,)
is below a given tolerance level e.

Fixed point equation method: Another numerical method that can be used to solve the
system of differential equations is the “fixed point equation method”, see e.g.|Bailey et al.
(1968). They study problems a bit different from ours but the iteration idea is the same.
They denote the method “Picard iteration” instead of “fixed-point equation method”. We
note that this method is the one that has been used to obtain the numerical results in
Section[f] The method is an iterative algorithm, which aims at solving the equation system
(3.8)) within a given tolerance level. The approach is to apply the following algorithm:

1. Choose a reasonable starting interest rate and transition intensities (¢° and i%).

2. Solve the equations for © and p (forwards) using ¢° and i° and denote the solutions
=0 -0
v” and p°.

3. Solve the system of equations for V; and (&, ,a) _(backwarfis) using the values obtained
in the former steps. We denote the solutions Vj0 and (qbl, [Ll)

4. Repeat step 2 and 3 (and increase the numbers of the superscripts accordingly) i
times, where i is defined by

i —argmin sup max< max < Vi(t) — ViTl(¢ },max{’i-t _ 5l },@it — i),
igeﬂV te[to]?T] {jes{f() i@ s p;(t) = pj (1) (t) (t)

510) ~ 1., {0 - w9} | <

(Gk)eT

where € is a given tolerance level. The fixed-point equation method is not necessarily
converging, unless we make further model restrictions; in particular assumptions on the
set M in . However, once we have found a sequence (V¢ p,7");cv that converges
pointwise to a limit (V*,p*,v*), we can, under mild conditions, conclude that the latter
limit is a solution to : Given that the assumptions of Proposition hold and that
the argmax in is continuous with respect to the parameters Vi(t) and p'(t) at V*(t)
and p*(t), we can show that (V*(t),p*(t),0*(t)) solves the integral version of (3.8). This
is shown by applying the dominated convergence theorem and using the constant C' in the
proof of Proposition as a uniform majorant for the functions V]’(t)

Remark 3.5. If we assume that the argmax in (@ does not depend on any of the
factors pi(t) for all k € S things get numerically simpler. Unfortunately, this only holds
for a very limited type of models like a multiple causes of death model, see |Christiansen)
and Steffensen| (20153). The numerical simplification is that the calculation of p and
decouples from the calculation of Vj,. That is, one can first solve the ODEs for V. with
o(t)p(t) = 1 (backwards) to obtain values for (fi, ), secondly use these results to calculate
(p,v) (forwards), and lastly use the results of (ji, @) and (p,v) to calculate Vi (backwards).
In this case the use of the shooting method is not necessary. If the argmax in (@)
is dependent on but constant in the factors pr(t) one can do exactly the same as before
by basing the first values v and p on some arbitrary values of u and ¢ in M. These
simplifications are for a fized starting state covered by|Christiansen and Steffensen (20135).

11



3.4 Some notes about the set M

One crucial ingredient of the calculations in the present paper is the set M, over which we
maximize the probability weighted reserve. To make the calculations useful for a company
they need to know certain probabilistic properties of the set, e.g. the confidence level. One
non-statistical way of obtaining a set is to use an expert opinion. However, it is hard to
deduce any properties from sets based on an expert opinion.

An alternative and more attractive method is to deduce a set with a certain coverage
from a stochastic model by either analytical or numerical methods. One could ask for the
advantages of this approach compared to just simulating reserves and finding confidence
intervals numerically. The answer to this is twofold. First, you gain some insight about the
nature of your risk by calculating the sets. Second, for many life insurance companies this
method will be computationally faster and for some easier to implement. The speedup
relative to directly simulating the reserves occurs because you only need to solve the
system of differential equations characterizing the reserve once, after having found the
set. The alternative is to simulate scenarios and solve differential equations over and over
again to get reliable results. This is particularly important when making calculations for
complex products modeled in Markov chains with many states in which case the differential
equations take a long time to solve. An additional advantage comes from the possibility
of using the same calculated sets for different products (for the same policyholder) and
for different policyholders, who have similar characteristics. We do not think that it is
a big drawback to use a parametric approach, since many companies already deal with
estimation in such models when e.g. forecasting the future mortality.

4 Worst-case calculations for portfolios

In this section we consider an inhomogeneous portfolio, whereby allowing for nonidentical
distributions of the jump processes modelling the policyholders. We generally assume that
the policyholders are stochastically independent and that the force of interest is the same
for all contracts. Given this independence assumption and assuming that there exists an
intensity matrix for each policyholder, we can conclude that two or more policyholders
change state at the same point in time with probability zero.

If the same set M is used for all policyholders in the portfolio but no interactions between
the worst cases of different contracts are taken into account, we can easily obtain the worst-
case reserve for the portfolio by calculating the worst-case reserve for each policyholder
separately and then summing over all the reserves. In practice, we think the mortalities
across the population are closely connected (dependent), so this is the case we want to
study. Such a study is not doable within the theory of |(Christiansen and Steffensen! (2013)),
because the requirements of that paper are not fulfilled in this case. This is because
dependence between policyholders in a portfolio implies that the argmax in |Christiansen
and Steffensen (2013} Proposition 4.1) is not constant with respect to all the discounted
transition probabilities; see also Remark The simple approach outlined above leads
to a rough upper bound only, for the worst-case in a portfolio. We illustrate this with a
numerical example in Section

There are a few simple cases of inhomogeneous portfolios, where we can confine ourselves
to the theory of Section 3] One of the cases, which was shortly mentioned in the beginning
of Section [3] is where the policyholders are governed by the same intensities and have the
same insurance product but have different starting distributions. This case is covered
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because it is equivalent to calculation of the worst-case scenario for a single policy with
a specific starting distribution. Another simple case is where the policyholders of the
portfolios are governed by the same intensities and starting distributions but have different
insurance products. In this case, the worst-case reserve of the portfolio can be found as the
worst-case reserve of a single policy, where the policyholder has the sum of the products of
all the policyholders in the portfolio. However, in general we need some extended results
to cover portfolios.

4.1 A representation for the worst-case reserve

The aim of this subsection is to find a simple representation for the worst-case reserve for
a portfolio of policyholders. To do so, we start by introducing some additional notation for
the setting with multiple policyholders. For the terms where the notation from Section
is applicable, we do not repeat these.

e [: Number of policyholders in the portfolio.

(X(t))te[o,T] = (X1(¢),... 7XL(t))te[0,T}: Representation of the state of the policy-
holders of the portfolio.

S ={(S1,...,81)|S; € S}: State space for all policies.

j: {(j,k) € S X S|j = (j17"'7jla"'7jL)7k: (j17"'73l7"'7j[/)7jl 7éjl7
le {1, ...,L}}

Transition space for all policies. The condition in the above formula means, that the
vectors j and k differ in exactly one coordinate.

VI(t): Statewise reserve at time ¢ for policyholder I in state i.

° bé.k (t) and bé- (t): Lump sum and continuous payments at time ¢ for policyholder .
. ,ué.k (t): Transition intensities at time ¢ for policyholder I.
° pé-k(s, t): Transition probabilities between time ¢ and s for policyholder .

In the following, we show that the “big model” collapses to something simpler. By “big
model” we mean that the portfolio is modeled as a single policy, such that we can use the
theory of Section |3| In the “big model”, we have |Si|- ... - |SL| states that cover all the
different combinations of policyholders and states. By defining

L
bj(t) = > b, (t) and byc(t) = b= (1)
=1
for j = (j1,...,Jr) and k = (j1, ... Tl ,71,) (recall that two or more jumps at the same

time occur with probability zero), we get that the present portfolio value B(t) equals the
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sum of the single present values,

Z/ (t,s l{X(s *J}b s)ds + Z / (t,s) _]k dN]k( )

jes (.keg

— l l
=> / (£, 9)1x(s) ,J}Zbﬂ )ds+ Y / (t, $)b. = (s)dN - (s)
JES G.keg

T
_Z 2 / vt, S)Hl{xk(s>:jk}b§-l(8)ds

11J1€31 ----- JLESL

(4.1)
+Z Z / t S jk’ le ( )
=1 (4,k)eT
L T
-3 Z/ ot M eyt S [ ot N ()
=1 \jeS Gkyed !

where B! is the present value of future payments for policyholder I, and N ]lk counts the
number of jumps from state j to state k for policyholder .

We have that the reserve for each policyholder follows a differential equation of the type
|| and that the transition probabilities, pé», follow the Kolmogorov equations given by
(2.2]). We now want to find the worst-case scenario for the portfolio. For this purpose, we

define a mapping W : [to, T] x (0,00) x [0,1]!S] = R by
W(to.p) = v) pEBOX(E) =]
jes

That is, we want to find the worst-case scenario for

W(to(t)p() = o)) mEBOIX(t) =]
JES
= o(t))_pi(EBO)X(H) =l
jes
where p(t) = (P(X(t) = j))jes and w5 = 7r]1-1 Cas 7erL because of the independence

assumption. Using again the stochastic independence of the policyholders and the additive
structure of (4.1), we can show that

L
Wit o(t),p(t) = v(t) > D e [B(0)|Xi(to) = j]

=1 je8§
:ZE/% £t | du
I=1je8§ keS;:k#]
We aim to find
sup W(t07v(t0)ap(t0);¢a ,ulw "MUL)a (42)

(p.pt,...,ut)eM
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where M C L%H‘ﬂ ([to, T)) is a set of integrable interest rate and transition intensity paths.
The starting point ¢y is the same for all policyholders of the portfolio and should therefore
be thought of as a calendar time point rather than an age in case of a heterogeneous
portfolio. Considering this portfolio as a single contract on the state space S, one can
apply the theory of Section |3| and obtain the desired results. Because of the huge state
space 8, the computational workload seems enormous. However, we can simplify the

formulas in (3.8]).

Proposition 4.1. For the “big model” the solutions of the differential equation system
given by (@ are equivalent to the solutions of

SVt =0+ V060~ X (00 + W - V0) i)

d _ _
S0 = =080, i) =1,
d v\ l _
SO == (0) FO, p) =7 1=1..L
L L
(B0 1 (O i () = avgmax S —FY SR OVIO+Y Y phml;
(fimtomE)EM(?) I=1ji€S) =1 (ji.ji)ed]

X (bl. S+ Vi) -V} (t))

JiJi

(4.3)

Proof. We start by considering the argmax given in (3.2)) for the entire portfolio. The
interior of the argmax is given by

5 _ -
- fv%W + Z pj | vbj + Z miic (Vi + Vp W — Vi, W)

jes keS k] (4.4)
o _ _ —
= — fU%W + Z pjvb; + Z Pj™Mjk (Ubjk + Vp W — ijW) .
jes (.keg

In (4.4), j and k are vectors of dimension L. We use that the lives of the policyholders

are independent conditional on the intensities and assume that j = (j1,...,7,-..j)" and
k= (j1,-->J15---,70)" with j; # j;. This means that we obtain:
L L
/1 11l
(4-4) = - f”Z Z P Vi, +UZ Z P;,b5,
=1 j;€S8; =1 j1€S;
L L
! . ! L. AT L _ i
F2 X e (e300
=1 (Gua)ed =1

L L
_ [ y/1 l
__fvzzpjl‘/jl+zzvpjl +Z Z le jzjz (]151—’_‘/31_‘/)'
I=1 j €S, I=1 jIE€S; =1 (j1,51) e
(4.5)
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We see that (4.5)) splits into components relating to each of the policyholders and that the
argmax does not depend on the second of the three terms. That is, we have proved the
proposition. O

In the following two subsections, we show examples of worst-case scenarios for specific
models of a portfolio.

4.2 Example 1: Solvency II

In this subsection we illustrate how the general theory above is used to generate a mortality
stress scenario for a portfolio of contracts. This is a way of constructing a stress scenario
as for instance the mortality stress in Solvency II. Depending on whether the portfolio is
a specific portfolio or a stylised market portfolio the generated scenario is internally based
or input to a standard calculation, respectively.

We consider a simple two-state life-death model and assume that there is no payments in
the state “dead”. We are maximizing the reserve with respect to compact sets of the form

M =503,

where S is given by (3.7) and B is defined via its slices

We assume that a(t) € [oy(t), ap(t)] and ®(t) = [¢y(t), #5(t)] and that oy, ap, ¢y, ¢p, and i

are bounded functions. Note that M is compact in L}HJ' by Lemma Assuming that

the L policyholders have different ages x1,...,z; at the current time, a natural choice
would be to model fi* of the form

A(t) = P (@i + A (24,1),

where ;"¢ is a best estimate mortality intensity and A is a longevity factor meaning that
A is decreasing in time. In this setup the interest rate is independent of the mortality
intensities and the mortality intensities are linearly dependent.

The argmax in becomes
(B(8), i (1), (1))
L L
= argmax {—f P ACIHCES W ACLECHORRHOY } .
=1 =1

(fym1,...mLYeM(t)
Because of linearity, this argmax can be found by calculating
L B L B
argmax {f PN ACIHORSS WACIION CHOBRHO) }
(fra)€(@(t) x[eu (t),an(t)]) I=1 I=1

and multiplying 7', ..., 4% with o

We can also consider a portfolio of disability contracts, see Figure That is, we study
contracts which can be modeled within a three state Markov chain where recovery from
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Figure 1: Disability model without recovery.

“disabled” to “active” is not possible. We assume no payments in the state “dead” and
that g is fixed in the sense that it is a deterministic function which we are not maximizing
the reserve with respect to. We want to find the worst-case reserve of this portfolio with
respect to ¢, pqq and u;q with respect to the sets of the form

M =503,

where S is given by (3.7) and B is defined via its slices

B(t) = { (¢(t)v Méd(ﬂ? :uzld(t)v s uuaLd(t)v MzLd(t)) € RiL—H’ (Z)(t) S (b(t)a
taa(t) = fiag(t)a(t), pig(t) = fig(t)B(), - ..,
pta(t) = k(o (t), wla(t) = ik(t)8(0)}.

We assume that ®(t¢) is defined as above and that «(t) € [ay(t),an(t)] and B(t) €
[Bi(t), Br(t)] for bounded functions al,ah,ﬁl,ﬂh,ﬂéd and ﬂéd. Note that M is compact

in L%HJ' by Lemma

Because of linearity, we can obtain (4(t), ' (¢), ..., a"(t)) by calculating

L
— { =13 (v + Ar)
(f,a,B)€(@(t) % [ (t),an ()] X [Bi(£), B (1)])

and multiplying ﬂ(lld, ey ﬂgd with a and /lild, . >/1£i with 5.

In the above calculations the death and disability intensities are independent. Another
possibility could be to make p,q and ;g dependent. This is exactly what is described in
Section In the case oy = «ap,, we optimize over a singleton with respect to pqq for each
time point and the argmax becomes trivial.

4.3 Example 2: Dependent version of the Solvency II example

This example is an extension of the result in Section [4.2| where we include sets of the form
given by the case “Dependence” in Figure [2] Agam, we assume no payments in the state
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“dead”. We are maximizing the reserve with respect to sets of the form
M=5nNB8B,

where S is given by (3.7) and B is defined via its slices

{ (6(), paa (), mig(t), - - mla(t), ply(2)) € RiLJA‘
B(t) € B(L), uky(t) = pla()a(t), uly(t) = ply(®)B@), . .., uky(t) = pE,®)a(t),
(

L

pha(t) = (D), (1), B1)) € B(1)}.

We assume that ®(¢) is given as in Section and B(t) is given on the linear programming
form

~+

73&%(%)—_5[(( ) g 7w 1(8) + Bi(t)

t)—oy(t)
3(Bn(t)—pi(t 3(/3h(t8 Bl(t)) (t) -8 (t)
— N7 h
B(t) ={ (z.y) e B2 a#’?t;aza% anff) ol "
h 1 h — Pl
emomm M| San B —on(0) 1 (£) = B (t)

|+
|
[
TN
<K
~__
IN

We choose the functions oy, oq, B, 8 in such a way that the slices B (t) are closed and uni-
formly bounded (in ¢). Moreover, we assume that the functions /i’ ; and fi¢; are bounded.
Note that M is compact 1n L 1+l by Lemma Because of linearity, we can find the
argmax (o(t), g (t), ..., g in . ) by calculatmg

L
argmax { fZ(pa HORSOVAC) R ACI O CHOBRAHO)
=1

(frB)E(@(t)x B(1)
+5sz lat) (vhat) = V1)) }
(4.6)

and multiplying i}, .. "ﬂad with a and i}, ... ,,u,zd with 5. To find ., we must at
each time point check each of the four extremal points of the set B(t) combined with the
extremal points of ®(t).

5 Numerical calculations

We have performed the numerical calculations in this section by applying the “fixed point
equation method” described in Section[3] In all our examples we obtained converging fixed-
point sequences, and in a neighborhood of the limit the argmax in , seen as a mapping
of reserves and transition probabilities, turned out to be continuous for almost all ¢. Taking
into account the arguments in the lines before Remark [3.5] our numerical results are indeed
approximations for the solutions of . First, we consider numerical calculations for a
single a policy. Next, we consider similar calculations for an inhomogeneous portfolio.

5.1 Numerical calculations for a single policy

We consider the example of a simple disability policy described in Figure (I} where the
payments are given by disability benefits in the state “Disabled” at a yearly rate b; = 1
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and lump sum payments paying out an amount of 3 upon transcription to the state “Dead”
from either of the states “Active” or “Disabled”. For simplicity, we assume that no
premiums are paid.

In the example we consider a person at the age of 35 and contract expiry at the age of 65.
We let the short rate be 2% and let both the intensity from “Active” to “Disabled” (which
we consider fixed) and the best estimate death intensity be given on a Gompertz-Makeham
form. The exact intensity parameters are given in Table [I We consider the same lower

be Has

0.0025_1_105?8%4—10—%0.038)( 0.00148 + 10%-97136—10+0.06x

Table 1: Best estimate intensities for a policyholder at age .

and upper bounds for both the active-death and the disabled-death intensities. The lower
bound is given by U(t) = 0.8125(¢) whereas the upper bound is given by L(t) = 1.15u>(¢).

In the following, we find the worst-case scenario for different sets M using numerical
methods. The argmax in can be either easy or hard to obtain depending on the
form of the slices of the set M. If we can formulate the optimization problem as a linear
program, which is the case for all the sets presented in Figure 2| we know that we only
need to search for the argmax in the extremal points of the sets. That is, for the two
cases “Independence” and “Dependence”, we only need to evaluate the object function
in four points, whereas for the case “Linear dependence”, we only need to evaluate the
object function in two points. In the case of a linear program, the extremal points are
quite obvious. In the more general case of a strictly convex set M (t), |Christiansen and
Steffensen| (2013, Appendix) outlines a way of obtaining the extremal points.

M(t): Independence M(t): Dependence M(t): Linear dependence

Hia(t) Hia(t)

U T U N Hia(t)

U(t)

L@ 4 Haa(t)  Ler) L taa(®) o L Haa(t)

L® um L© v L) U

Figure 2: Three different trust regions.

The figures show the worst-case bases (conditional on that the current state is “Ac-
tive”) for the three different types of sets depicted in Figure[2] In the case “Dependence”,
the four extremal points are {(L(t),L(t)), (L(t) + 0.25(U(t) — L(t)), L(t) + 0.75(U(t) —
L(t))), (U(t),U(t)), (L(t) +0.75(U(t) — L(t)), L(t) + 0.25(U(t) — L(t))) }. In the case of in-
dependence, the worst-case scenario is that the intensity pqq is as high as possible through-
out the entire period, since the chances of getting disabled is not that high. On the other
hand, the intensity u;q is only high at the very last part of the period of the contract, be-
cause there are no more disability benefits after the transition. Note that a bigger relative
difference between b; and b,y = b;q would have caused the shift from low to high intensity
to happen earlier.

In the case of dependence, the situation is not equally simple. Here, the tradeoff between
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having a high intensity p.q and a low intensity p;q results in the worst-case scenario for
the middle of the time span of the contract becoming p.q(t) = L(t) + 0.75(U(t) — L(t))
whereas p;q(t) = L(t) + 0.25(U(t) — L(t)). Note that these are not corner points of the
marginals in contrast to the case of independence. The worst-case scenario occurs because
the level of p,q is more important for the size of the reserve than the level of u;qy. This is
because the level of ;4 is a second-order effect in the state “Active”, since p;q only matters
after transition to the state disabled. However, this second-order effect is so significant
that the worst-case scenario is not to maximize both p.q and piq.

For the linear dependent case we, as in the dependent case, see that the impact of g is
more significant than the impact of ;g implying that both are maximized for the entire
time span.
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0,020 4
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Figure 3: The worst-case death intensities in the case of independence.
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Figure 4: The worst-case death intensities in the case of dependence.

In Figure [6] we see that the convergence to the fixed point is fairly fast: After only four
iterations, we have obtained convergence.
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Figure 5: The worst-case death intensities in the case of linear dependence.
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5.2 Numerical calculations for a portfolio

In this section we illustrate the theory of Section [ for a representative portfolio consisting
of a young, a middle-aged, and a close-to-pension-aged policyholder. We are in the two
state life-death model and are maximizing over the type of sets described in Section[d.2] We
assume that all three representative policyholders have the same type of contract. That is,
they have a term insurance paying 15 at death before retirement (age 67) and a life annuity
paying a yearly rate of 1 starting at retirement. Their baseline death intensities are given
as ,ugfl in Table|l} For the present example the set of interest rates is ® = {0.02}, the lower
multiplicative factor is oy = 0.8, and the upper multiplicative factor is «y = 1.15. The
values of a; and «j are motivated by the mortality and longevity stresses from Solvency
IT, see EIOPA| (2013).

We obtain the worst-case intensities illustrated in Figure [7] on a logarithmic scale. We
denote by subscript 30 the youngest policyholder, by subscript 45 the middle-aged poli-
cyholder, and by subscript 60 the oldest policyholder. Moreover, we use “I” to indicate
that quantities are calculated at an individual level, and “P” to indicate that quantities
are calculated on portfolio level. We see from Figure [7] that the worst-case scenario for
the oldest person is the same as the worst-case scenario at the portfolio. The scenario is
that the intensity is as high as possible for the first seven years (until retirement of the
oldest policyholder), and hereafter it is as low as possible. On the other hand, the worst
case-scenarios for the two other policyholders are quite different compared to the worst-
case scenario for the portfolio. The statewise worst-case reserves for the policyholders
corresponding to the intensities in Figure [7] can be found in Figure

Worst-case intensities

90

Time (years)

Log intensities (with base 10)

e
-
e
-

Pt

|
o

——n 30 P ==-p_30_I
-3 —— W 45 P ==--p 451
—— W 60 P ==-p_60_I

Figure 7: Worst-case intensities for the portfolio and for each individual policyholder.

In Table [2| we compare the reserves for the three policyholders in the portfolio calculated
with different bases. The first is the best estimate basis, the second is «y, times the best
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Statewise worst-case reserves

Reserves

0 10 20 30 40 50 60 70 80 90
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Figure 8: Statewise worst-case reserves calculated on basis of the worst-case scenarios for
the individual policyholders and the worst-case scenario for the portfolio.

estimate, the third is «; times the best estimate, and the fourth and fifth are the worst-case
bases for the portfolio and the individual policyholders, respectively.

The numbers for “Solvency II (mortality)” and “Solvency II (longevity)” can be used
to calculate the SCR in the “standard model”. Assuming that only mortality risk and
longevity risk apply to our portfolio, the SCR is defined as

SCR = \/(AVmortality)Z + (Avlongevity)2 —~92.025- AVmortalityAVlongevity’ (5_1)

where
L
mortality __ l be R v be
AV Y= lgl max (V (,u 1.15) Vv (u ) ,0) ,

AVlongevity — ZL: max (V! (5-08) = V! (1) ,0) .
=1

The result of this calculation together with the calculations of the worst-case reserves
lead to three different “SCR-like” quantities presented in Table |3, We here see that the
SCR for the entire portfolio is significantly smaller for the worst-case scenario for the
portfolio (=~ 6.8% of the reserve) compared to the worst-case scenario for the individual
policyholders (= 8.2% of the reserve). However, they are both bigger than the SCR
calculated using (5.1) (= 5.9% of the reserve).

23



PH1 | PH2| PH3| Sum
Best estimate 6.91 | 8.80 | 11.09 | 26.81
Solvency II (mortality) | 6.81 | 8.57 | 10.60 | 25.97
Solvency 1II (longevity) | 7.17 | 9.27 | 11.97 | 28.40
Worst-case (PF) 7.23 | 9.35 | 12.06 | 28.64
Worst-case (separate) 7.45 | 9.49 | 12.06 | 29.00

Table 2: Reserves calculated by different methods (b,q = 15) for the three policyholders.

Solvency II | Worst-case (PF) | Worst-case (separate)
1.59 1.83 2.19

Table 3: SCR calculated by different methods (byq = 15).

5.2.1 Increasing the term insurance - making more shifts in the worst-case
intensities

In the previous example, we saw that there was one shift for the worst-case intensity for
the portfolio; the shift was from low to high intensity after seven years. This kind of
structure is probably quite normal for a big portfolio. However, this is not necessarily the
case. There can be many more shifts, as we illustrate in this section. The only difference
compared to the former example is that the term insurance is increased from 15 to 32.
This leads to the worst-case intensities in Figure[9, where we have jumps in the worst-case
intensities after the retirement of each of the policyholders. We also note, as opposed to
the example with b,q = 15, that none of the individually worst-case intensities coincide
with the worst-case intensity for the portfolio. A table equivalent to Table [3|can be found
in Table Bl The results there illustrate that the relative differences between the results of
the different calculation methods can be quite big.

A comparison of different types of SCR-like calculations can be found in Table [4. We note
that the relative differences of the SCRs are much bigger than in the former example with
bea = 15.

PH1 | PH2 | PH3 | Sum
Best estimate 10.01 | 11.95 | 13.08 | 35.05
Solvency II (mortality) | 10.30 | 12.12 | 12.86 | 35.28
Solvency II (longevity) | 9.71 | 11.85 | 13.58 | 35.15
Worst-case (PF) 10.28 | 12.78 | 13.54 | 36.60
(separate) | 10.93 | 13.04 | 14.33 | 38.30

Worst-case

Table 4: Reserves calculated by different methods (b,q = 32) for the three policyholders.

The three different calculation methods lead to the three different SCR presented in Ta-
ble Bl
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Worst-case intensities
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Figure 9: Worst-case intensities for the portfolio and for each individual policyholder
(baqg = 32).

Solvency II | Worst-case (PF) | Worst-case (separate)
0.59 1.55 3.25

Table 5: SCR calculated by different methods (b,q = 32).
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5.3 Conclusion

First, what is meant by stressing a portfolio with respect to mortality and longevity by
scaling the mortality rate by between 0.8 and 1.15?7 The standard formula represents
one interpretation. The negative correlation in is a (normal) probabilistic formal-
ization of the idea that experiencing future high mortality rates and future low mortality
rates tend not to happen in the same realization. Our calculations do not assume such “re-
strictions”. We actually do find that the worst thing that can happen is that the mortality
rate is high in the near future and low in the distant future and our worst-case approach
really allows this realization to occur. Our numerical example shows that the standard
formula based on a negative correlation of 0.25 leads to a too low capital requirement
compared to the one obtained in our calculation. We do not claim that one can draw
strong quantitative conclusions from this. What we do claim is that it is urgently impor-
tant to understand exactly what is calculated and what is not. If one tends to believe that
mortality rates actually can be high in the near future and low in the distant future, then
calculations based on the standard formula may be dangerous.

Second, what is the intuition behind the high mortality rates in the near future and the
low mortality rates in the distant future? This conforms with the basic understanding
that in the near future, when policyholders are relatively young and hold positive sums
at risk, high mortality rates are undesirable. Conversely, in the distant future, when
policyholders are relatively old and hold negative sums at risk, low mortality rates are
undesirable. The individual calculations in this section take into account these effects on
a policy by policy basis in the sense what defines the near and distant future depends
on the age of the individual policyholder. This is the simpler calculation giving a worst-
case basis separately for each policy. The portfolio calculations deal with the situation
where the same realized mortality rate counts for all policies, thinking of uncertainty in
the mortality rate as being at macro-level. Inhomogeneity in the portfolio now reduces
the consequences of the worst case and the capital requirement goes down. It is important
to understand that this has absolutely nothing to do with diversification but is related to
portfolio inhomogeneity exclusively. The inhomogeneity in the portfolio with respect to
age and products may be so involved that the worst-case “jumps” up and down before it
finds its low when the distant future is finally met, as illustrated in subsection [5.2.1

Third, what do these solvency calculations have to do with design and pricing, which was
mentioned in the introduction? Here, it is important to remember that a policy is an
object for safe-side calculation already upon pricing, before the contract is underwritten
and goes into the solvency calculation. So the first safe-side calculations are part of the
internal pricing and management procedures in contrast to solvency calculations where
principles and restrictions are given from outside. Owur results illustrate how one can
ascertain a given level of prudence by setting the first order pricing basis. Individual and
portfolio level calculations allow for setting the first order bases differently for different
(groups of) policyholders. A more individual unit for pricing leads to a more prudent
pricing basis and, thus, higher surplus contributions from the portfolio. This idea was
maybe not relevant in the past due to technological limitations. We have then indirectly
illustrated the prudency effects of micro-pricing in life insurance by different tailor-made
first order bases used for a portfolio of inhomogeneous policies.

Fourth, what can we conclude in general about scenarios on the basis of our calculations?
In contrast to some of the general references mentioned in the introduction, we do not
criticize scenarios as a mean of solvency calculations and management for being too un-
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informative, too inaccurate or too simple. Rather, we push forward scenarios, exactly
for being simple to work with and understand. They just have to be chosen such that
information and accuracy is not lost in the translation between distributional aspects of
intensities and reserves, respectively. We consider general policies and portfolios and find
that the worst-case intensities are the ones that maximize the expected sum at risk. Since
the intensities occur in the expectation itself, this is a delicate optimization and not just
a check of the sign of a given sum at risk. However, once the calculational challenges are
overcome, one is left with a stress calculation simple to implement, simple to interpret,
and simple to communicate, while actually bounding the insolvency probability, see also

the paragraph around (|1.1)).

Acknowledgments: We are grateful to an anonymous referee for many fruitful comments
that greatly improved the paper.
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