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Abstract 

Risk ranking is an important component for optimization of risk management efforts. 

Prioritization of environmental risks is a specific area which ranks risks geographically 

with fair and accurate standards. Analytic tools are not always helpful for the 

prioritization. In some cases, especially when we are interested in environmental risk 

prioritization, we may consider the geographic information of our data. Therefore, we 

can use geographic information system (GIS) as a tool for prioritizing risks. In this study, 

we aim to investigate the aggregate claims of different risk classes in agricultural 

insurance in terms of their comparability and orderability under the dependency 

assumption. For this aim, we firstly classify actuarial risks of an agricultural insurance 

portfolio according to spatial and temporal characteristics of hazard regions. After 

that, we use a stochastic ordering relation called stochastic majorization that is 

proposed within the framework of partial order theory. We take into account the 

dependency of the individual claims exposed to similar environmental risks. 

Key words: Aggregate claims, Partial order theory, Schur-convexity, Stochastic 

majorization, Crop-hail insurance. 

1. Introduction 

It is assumed in the classical risk theory that individual claims are independent. 

However, Dhaene et al. (2002a) give some examples attesting to the fact that the 

independency assumption is unrealistic [2]. The individual risks may be dependent 

since they are exposed to similar hazards or affected by similar adverse effects such 

as physical or financial environment. For instance, the claims of an agricultural 

insurance policy are contingent on the probability of the occurance and the 

consequences of the same meteorological event. The crops are subjected to the 

same physical environment by being produced in the same geographic area. 

Hereby, we discuss the prioritization of the dependent aggregate claim random 

variables (r.v.s) of the disjoint risk classes. We assume that the claims within the risk 

classes are correlated. Ambagaspitiya (1998) proposes a general method in order to 

determine the distribution of the aggregate claims under the assumption that there 

are a number of dependent classes of business [1]. We use the general vectorial 

definition proposed in this study. 

In our study, we firstly classify actuarial risks of an agricultural insurance portfolio 

according to spatial and temporal characteristics of hazard regions. We take into 

account the dependency of the individual claims exposed to similar environmental 

risks. After that, we use the stochastic majorization relation which is one of the 

stochastic ordering relations proposed within the framework of partial order theory. 
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The common tendency of the existing studies for comparing portfolios of correlated 

risks shows that the distributional properties and the moments of the aggregate claim 

r.v. are useful tools for the aim of prioritizing actuarial risks. Defining a sufficient measure 

that includes enough information about the portfolio and reflects it accurately is one 

of the most important tasks for evaluating the risk. The dispersion and the correlation 

should be considered in addition to the mean when determining the risk measures, 

since the expected value of the total claim r.v. does not differ under either 

dependency or independency cases. Because of their representing both variation 

and dependency in addition to the mean, we suggest using “coefficient of variation” 

and “(standardized) generalized variance” as risk measures in this study. According 

to our definition of risk as an aggregate claim r.v., we use these measures in the 

context of multivariate analysis. 

This paper is organized as follows: We introduce the multivariate representation of the 

actuarial risks within the framework of the collective risk models in Section 2. We 

provide the theory of majorization and Schur-convexity in Section 3. In Section 4, we 

present our data set of crop-hail insurance and explain how we organize this data for 

the prioritization aims and give some results for a case study. Concluding remarks are 

made in the last section. 

2. Multivariate Representation of the Actuarial Risks 

In order to introduce our model setting, let us consider a crop-hail insurance portfolio. 

We suppose that there are 𝑚 risk classes and 𝑝𝑖 crop classes for 𝑖-th risk class with 𝑖 =
1,2,… ,𝑚. The aggregate claims for the 𝑖-th risk class can be considered as a 𝑝𝑖-variate 

random vector (r.vector) as follows: 

𝑺(𝒊)  =  (𝑆1
(𝑖), 𝑆2

(𝑖), … , 𝑆𝑝𝑖
(𝑖))

′

. 

Here, the aggregate loss of the 𝑖-th risk class and 𝑗-th crop class can be represented 

by the r.v. 𝑆𝑗
(𝑖)

 and it is obtained as 

𝑆𝑗
(𝑖)
= ∑ 𝑋𝑗𝑘

(𝑖)𝑁𝑗
𝑘=1 , 

where 𝑁𝑗 is the claim number of the 𝑗-th crop class and 𝑋𝑗𝑘
(𝑖)

 is the claim amount of the 

𝑘-th individual claim in the 𝑗-th crop class with 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑝𝑖, and 𝑘 =
1,2,… ,𝑁𝑗. 

Here, while the risk classes are disjoint, the claims within the classes are correlated. 

According to our data set, the risk classes are determined with respect to their 

environmental similarities. Therefore, we assume that the claims exposed to similar 
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environmental risks, which means the claims arising in the same risk class, are 

dependent. 

We can compare the risk classes using the risk measures related to either the 

aggregate claim r.vector 𝑺(𝒊) or the overall aggregate claim r.v. 𝑆(𝑖)  = ∑ 𝑆𝑗
(𝑖)𝑝𝑖

𝑗=1  =

𝟏′ 𝑺(𝒊).  In order to compare the aggregate claim r.vectors, both the generalized 

variance (GV) defined as 

GV (𝑺(𝒊))  = det( 𝚺(𝑖)) = |𝚺(𝑖)|, 

and standardized generalized variance (SGV) defined as 

SGV (𝑺(𝒊))  = |𝚺(𝑖)|
1
𝑝𝑖 

can be used as risk measures representing the overall variabilities [7]. In addition to 

these measures, the overall aggregate claim size r.v.s can be ordered by the 

coefficient of variation (CV) defined as 

CV(𝑆(𝑖)) =
𝜎(𝑖)

𝜇(𝑖)
. 

Here, 𝜇(𝑖) =  𝟏′𝝁(𝒊) is the mean and 𝜎(𝑖) = 𝟏′ 𝚺(𝑖)𝟏 is the standard deviation of the r.v. 

𝑆(𝑖) where the mean vector of the r.vector 𝑺(𝒊) is represented as 

𝝁(𝒊)  =  (𝜇
1
(𝑖), 𝜇

2
(𝑖), … , 𝜇𝑝𝑖

(𝑖)) ′, and 

the covariance matrix of the r.vector 𝑺(𝒊) is obtained as 

𝚺(𝑖) = (

𝜎1
(𝑖)2

𝜎12
(𝑖) ⋯ 𝜎1𝑝𝑖

(𝑖)

⋮         ⋮ ⋱ ⋮

𝜎𝑝𝑖1
(𝑖)

𝜎𝑝𝑖2
(𝑖)

⋯ 𝜎𝑝𝑖
(𝑖)2
). 

3. Ordering Risks: Inequalities 

Majorization, which is an ordering relation of real-valued vectors, turns out to be a 

useful tool, since we are interested in the prioritization of the aggregate claim r.vectors 

in this study. Because it appears within the framework of partial ordering, the vectors 

do not need to be totally ordered, which is very advantageous for our study. 
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3.1. Theory of Majorization 

After introducing our model setting in Section 2, the following definition clearly 

demonstrates the convenience of the majorization relation for prioritizing the 

aggregate claim vectors. 

Definition 3.1.1. For 𝑛-dimensional vectors 𝒙, 𝒚 𝜖 ℝ𝑛, the ordering 𝒙 ≲𝑚𝑎𝑗 𝒚 denotes that 

𝒚 majorizes 𝒙 (or 𝒙 is majorized by 𝒚), and it is defined by [3] as follows: 

𝒙 ≲maj 𝒚 iff {
∑ 𝑥[𝑖]
𝑘
𝑖=1 ≤ ∑ 𝑦[𝑖]

𝑘
𝑖=1 ; 𝑘 = 1,2, … , 𝑛 − 1

∑ 𝑥[𝑖]
𝑛
𝑖=1 = ∑ 𝑦[𝑖]

𝑛
𝑖=1                                      

.   (1) 

Here, 𝑥[𝑖] denotes 𝑖-th component of 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)  𝜖 ℝ
𝑛 in the decreasing order, 

i.e. the 𝑖-th element of the vector 𝒙 ↓ = (𝑥[1], 𝑥[2], … , 𝑥[𝑛]) where 𝑥[1] ≥ 𝑥[2] ≥ ⋯ ≥ 𝑥[𝑛]. 

The Condition (1) is equivalent to the condition below: 

𝒙 ≲maj 𝒚 iff {
∑ 𝑥(𝑖)
𝑘
𝑖=1 ≥ ∑ 𝑦(𝑖)

𝑘
𝑖=1 ; 𝑘 = 1,2, … , 𝑛 − 1

∑ 𝑥(𝑖)
𝑛
𝑖=1 = ∑ 𝑦(𝑖)

𝑛
𝑖=1                                      

.    (2) 

Here, 𝑥(𝑖) denotes 𝑖-th component of 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)  𝜖 ℝ
𝑛 in the increasing order, i.e. 

the 𝑖-th element of the vector 𝒙 ↑ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) [5]. 

In addition, if we use the strict inequality “<” instead of “≤” in Condition (1), or “>” 

instead of “≥” in Condition (2) for 𝑘 = 1,2, … , 𝑛 − 1, the ordering is called strict 

majorization. 

3.2. Schur-convexity 

“Order-preserving” functions are very beneficial in this context, since we use risk 

measures defined as functions to evaluate risks. A real-valued function which 

preserves the ordering of the majorization is said to be a “Schur-convex” function [5]. 

In 1923, Schur introduced the Schur-convex function that is also known by the name 

“Schur-increasing function”. For the risk assessment, it is important to use a measure 

reflecting the risk of a portfolio sufficiently and accurately. Therefore, we choose a risk 

measure that fulfils the properties of Schur-convexity and we use it to order the 

aggregate claims with the stochastic majorization relation. 

Definition 3.2.1. A real function 𝜑: 𝒜 → ℝ for some set 𝒜 ⊂ ℝ𝑛 is said to be Schur-

convex on 𝒜 if 

𝒙 ≲𝑚𝑎𝑗 𝒚 𝑜𝑛 𝒜 ⟺  𝜑(𝒙) ≤ 𝜑(𝒚).      (3) 
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𝜑 is strictly Schur-convex on 𝒜 if 𝒙 ≺𝑚𝑎𝑗 𝒚 𝑜𝑛 𝒜 ⟺  𝜑(𝒙) < 𝜑(𝒚) when 𝒙 is not a 

permutation of 𝒚.  

Likewise, 𝜑 is said to be Schur-concave on 𝒜 if 

 𝒙 ≲maj 𝒚 on 𝒜 ⟺  𝜑(𝒙) ≥ 𝜑(𝒚).      (4) 

𝜑 is strictly Schur-concave on 𝒜 if 𝒙 ≺maj 𝒚 on 𝒜 ⟺  𝜑(𝒙) > 𝜑(𝒚) when 𝒙 is not a 

permutation of 𝒚. 

Remark 3.2.2. 𝜑(𝒙) is Schur-convex on 𝒜 if and only if −𝜑(𝒙) is Schur-concave on 𝒜. 

In order to show that a function 𝜑: 𝒜 → ℝ with 𝒜 ⊂ ℝ𝑛 is Schur-convex (Schur-

concave), the following theorem is needed. 

Theorem 3.2.3. (Schur's Condition) Suppose that 𝜑: ℐ𝑛  → ℝ is continuously 

differentiable where ℐ ⊂  ℝ is an open interval. 𝜑 is Schur-convex on ℐ𝑛 if 

i. 𝜑 is symmetric on ℐ𝑛, and 

ii. (𝑥𝑖 − 𝑥𝑗) (
𝜕𝜑

𝜕𝑥𝑖
−

𝜕𝜑

𝜕𝑥𝑗
) ≥ 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Therefore, if the ordering is majorization, then “𝜑 is increasing” means “𝜑 is Schur-

convex”. 

4. Application 

4.1. Data 

We use the claim data provided by Agricultural Insurance Pool (TARSIM) that is a 

governmental institution taking the responsibility for the development of agricultural 

insurance in Turkey. Since 95.3% of the policies of agricultural products are crop 

insurance policies in 2015, we focus on crop insurance. Crop insurance covers the 

agricultural products exposed to various sources of risk such as hail, frost, storm and 

flood. Within the crop insurance products, 55.3% and 39.3% of the causes of the paid 

loss are hail and frost, respectively. In addition, the frost hazard is covered together 

with the hail hazard, not by itself. Thus, we only need to take crop insurance claims 

caused by the hail hazard. 

After we omit the data for the policies that are cancelled, we have 975,971 crop 

claims (including zero claims) caused by hail in 2014. Since the information about the 

policy holder is not provided by TARSIM, we need to obtain the individual claims 
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through village codes and lot-block codes, together. After merging the same village 

codes and lot-block codes, the size of the data reduced to 831,325. 

4.2. Classification of the Agricultural Claims 

We classify actuarial risks of an agricultural insurance portfolio according to spatial 

and temporal characteristics of hazard regions. In order to do that, we use 

meteorological data as inputs such as maximum temperature, minimum surface 

temperature, precipitation, snow cover, snow water equivalent etc.. The data is 

recorded at weather stations at various times. For the unknown values in the claim 

data, “spatio-temporal interpolation” techniques are used, especially in GIS. 

With the help of the spatio-temporal interpolation, the meteorological quantities of a 

claim can be estimated related to its location and time. Li and Revesz (2004) show 

that the extension approach for the spatio-temporal interpolation gives the most 

accurate results among various interpolation algorithms [4]. This method is a 3-

dimensional approach, two for space and one for time and the missing value is 

interpolated using 3-D shape functions. 

4.3. Ordering of the Agricultural Claim Data 

After we classify the claims according to the hazard regions and crop types, we 

arrange the aggregate claim vectors for the risk class 𝑖 = 1,2, … ,𝑚 and crop class 𝑗 =

1,2,… , 𝑝𝑖 with regard to our setting 𝑺(𝒊)  =  (𝑆1
(𝑖), 𝑆2

(𝑖), … , 𝑆𝑝𝑖
(𝑖))

′

. 

In order to compare the riskiness of the aggregate claim classes using the majorization 

relation, we need both a risk measure and observations represented as vectors having 

the majorization relation. Once we have a Schur-convex function being taken as a 

risk measure, we need to check if the majorization relation exists between vectors. 

After that, we can order the functional values and infer that the riskiness of the classes 

can also be ordered similarly.  

In order to prioritize the aggregate claim vectors, we firstly check the properties for 

the majorization given in Definition 3.1.1. Then, we use a risk measure which fulfils the 

conditions of Schur-convexity provided in Theorem 3.2.3. 

Risk measures are classified into two types, as safety risk measures evaluating wealth 

under risk and as dispersion measures assessing the uncertainty level [6]. Since our aim 

for the future is to associate this study with “decision under uncertainty”, we choose 

the second class of risk measures. 

In the first phase, we use the sample variance as a risk measure, which is one of the 

main dispersion measures. The sample variance is a dispersion measure used for 
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ordering the aggregate claims of 𝑚 risk classes through majorization relation. In order 

to do that, we set the prioritization of the aggregate claims as follows: 

𝑺(𝒌)  ≲maj 𝑺
(𝒍)  ⟺  𝜑 (𝕍(𝑺(𝒌))) ≤ 𝜑 (𝕍(𝑺(𝒍))),     (5) 

where 𝜑 is a Schur-convex function. We order the aggregate claim vectors of the 𝑘-

th and 𝑙-th risk classes considering an ordering between the function values of their 

variances. 

4.3.1. Schur-convexity of a risk measure 

According to Marshall et al. (2009), the sample variance defined as 

𝜑1(𝒙)  =  𝜑1(𝑥1, 𝑥2, … , 𝑥𝑛)  =  
1

𝑛
 ∑( 𝑥𝑖 − 𝑥̅)

2

𝑛

𝑖=1

 

is strictly Schur-convex with respect to 𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝑛). 

In order to show that 𝜑1 fulfills the Schur's conditions, we firstly check whether it is 

symmetric or not. Since this function gives the same values for all permutations of 𝒙, it 

is symmetric. For all permutations (𝑥1, 𝑥2, … , 𝑥𝑛), the function 𝜑1(𝑥1, 𝑥2, … , 𝑥𝑛) is the same 

because ( 𝑥𝑖 − 𝑥̅)
2 is the same. 

Secondly, we need to show that (𝑥𝑖 − 𝑥𝑗) (
𝜕𝜑1

𝜕𝑥𝑖
−
𝜕𝜑1

𝜕𝑥𝑗
) > 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 in order 

to prove that 𝜑1(𝒙)  is strictly Schur-convex. Let 𝑥1 > 𝑥2. Then, 

𝜕𝜑1
𝜕𝑥1

=
1

𝑛
[2 (𝑥1 −

𝑥1 +⋯+ 𝑥𝑛
𝑛

) (1 −
1

𝑛
) + 2 (𝑥2 −

𝑥1 +⋯+ 𝑥𝑛
𝑛

) (−
1

𝑛
) +⋯

+ 2 (𝑥𝑛 −
𝑥1 +⋯+ 𝑥𝑛

𝑛
)(−

1

𝑛
)] 

and 

𝜕𝜑1
𝜕𝑥2

=
1

𝑛
[2 (𝑥1 −

𝑥1 +⋯+ 𝑥𝑛
𝑛

) (−
1

𝑛
) + 2 (𝑥2 −

𝑥1 +⋯+ 𝑥𝑛
𝑛

)(1 −
1

𝑛
) +⋯

+ 2 (𝑥𝑛 −
𝑥1 +⋯+ 𝑥𝑛

𝑛
)(−

1

𝑛
)] 

⇒
𝜕𝜑1
𝜕𝑥1

−
𝜕𝜑1
𝜕𝑥2

=
2

𝑛
[(𝑥1 −

𝑥1 +⋯+ 𝑥𝑛
𝑛

) − (𝑥2 −
𝑥1 +⋯+ 𝑥𝑛

𝑛
)] =

2

𝑛
(𝑥1 − 𝑥2) 
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Since 𝑥1 > 𝑥2, 𝑥1 − 𝑥2 > 0 and 
𝜕𝜑1
𝜕𝑥1

−
𝜕𝜑1
𝜕𝑥2

=
2

𝑛
(𝑥1 − 𝑥2) > 0. This is true for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Therefore, 𝜑1(𝒙)  is strictly Schur-convex with respect to 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛). 

4.3.2. Rearrangement of the aggregate claim vectors 

According to our main setting given in Equation (5), we rewrite the majorization 

definition as follows: 

𝑺(𝒌) ≲maj 𝑺
(𝒍) iff {

∑ 𝑆[𝑗]
(𝑘)𝑝𝑖

𝑗=1 ≤ ∑ 𝑆[𝑗]
(𝑙)𝑝𝑖

𝑗=1 ; 𝑝𝑖 = 1,2,… ,𝑚− 1

∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1 = ∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1                                    
    (6) 

The aggregate claim vector 𝑺(𝒌) for the 𝑘-th risk class is majorized by the aggregate 

claim vector 𝑺(𝒍) for the 𝑙-th risk class if and only if the right-hand side of the equation 

is true. Here, we rearrange the aggregate claim vectors by sorting them into 

descending order. 

It is obvious that the condition ∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1 = ∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1  is very unlikely to be fulfilled 

because aggregate claims are continuos random values. Thus, in order to overcome 

this problem, we redefine the majorization relation as follows: 

                     
𝑺(𝒌)

∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1

≲maj
𝑺(𝒍)

∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1

 iff 

{
 
 

 
 ∑ 𝑆[𝑗]

(𝑘)𝑝𝑖
𝑗=1

∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1

≤
∑ 𝑆[𝑗]

(𝑙)𝑝𝑖
𝑗=1

∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1

; 𝑝𝑖 = 1,2,… ,𝑚− 1

∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1

∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1

= 1 =
∑ 𝑆[𝑗]

(𝑙)𝑚
𝑗=1  

∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1

                                  

           (7) 

We divide all the elements in Equation (6) by the summations to obtain Equation (7). 

Thus, we have two conditions to be checked in order to show that 𝑺(𝒌) is majorized by 

𝑺(𝒍): 

i. 
∑ 𝑆[𝑗]

(𝑘)𝑝𝑖
𝑗=1

∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1

≤
∑ 𝑆[𝑗]

(𝑙)𝑝𝑖
𝑗=1

∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1

 

ii. ∑ 𝑆[𝑗]
(𝑘)𝑚

𝑗=1 ≥ ∑ 𝑆[𝑗]
(𝑙)𝑚

𝑗=1  

4.4. Case Study 

We determine 23 risk classes and 18 crop classes in our data set. We select 4 risk classes 

(8-th, 9-th, 19-th and 20-th) as a case study here. Considering the first and second 
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conditions of Equation (7), it is obtained that there is a strict majorization relation 

among these 4 classes. We find the following results. 

∑ 𝑆[𝑗]
(8)18

𝑗=1 > ∑ 𝑆[𝑗]
(9)18

𝑗=1 > ∑ 𝑆[𝑗]
(19)18

𝑗=1 > ∑ 𝑆[𝑗]
(20)18

𝑗=1 , and 

∑ 𝑆[𝑗]
(8)𝑝8

𝑗=1

∑ 𝑆[𝑗]
(8)18

𝑗=1

<
∑ 𝑆[𝑗]

(9)𝑝9
𝑗=1

∑ 𝑆[𝑗]
(9)18

𝑗=1

 <
∑ 𝑆[𝑗]

(19)𝑝19
𝑗=1

∑ 𝑆[𝑗]
(19)18

𝑗=1

<
∑ 𝑆[𝑗]

(20)𝑝20
𝑗=1

∑ 𝑆[𝑗]
(20)18

𝑗=1

 . 

Thus, 𝑺(𝟖) ≺maj 𝑺
(𝟗) ≺maj 𝑺

(𝟏𝟗) ≺maj 𝑺
(𝟐𝟎) is true for this sample. 

Lastly, we check the Schur-convex functional values for these classes given in Table 

4.1. 

 
Table 4.1. The sample variance values of the variance of aggregate claim vectors 

From Table 4.1, the same ordering direction exists among risk classes. Therefore, we 

can conclude that the 8-th class is the least risky class and the 19-th class is the most 

risky class: 

𝑺(𝟖) ≺maj 𝑺
(𝟗) ≺maj 𝑺

(𝟏𝟗) ≺maj 𝑺
(𝟐𝟎) 

⟺  𝜑 (𝕍(𝑺(𝟖))) < 𝜑 (𝕍(𝑺(𝟗))) < 𝜑 (𝕍(𝑺(𝟏𝟗))) < 𝜑 (𝕍(𝑺(𝟐𝟎))). 

5. Conclusion and Future Study 

We choose a sample for a case study and we use sample variance as a risk measure 

assessing the dispersion in the chosen sample for our portfolio. For the future studies, 

we will firstly look at the overall portfolio considering the multiple majorization 

conditions. Another goal of this study is to consider different risk measures especially 

the ones related to the population. We will try to prove the Schur's conditions for 

different risk measures such as population variance, coefficient of variation etc. 

Speaking of overall porfolio, stop-loss dominance is another stochastic relation 

reflecting the riskiness of the aggregate claims. Therefore, we will lastly evaluate 

whether stop-loss premiums can be used in the frame of majorization. 
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