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The problem

The evaluation of the sum of dependent risks is a main

issue for many applications in finance and insurance

(Value-at-Risk, Expected Shortfall, Stop-Loss reinsur-

ance, ...). The key problem for a positive s is

P [X1 + ...+Xd ≤ s]

where

X1, ... , Xd non-negative (bounded from below) r.v.

H(x1, ... , xd) distribution function

VH probability measure
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1. AEP algorithm

Arbenz P., Embrechts P., Puccetti G. (Bernoulli, 2011):

The AEP algorithm for the fast computation of the

distribution of the sum of dependent random variables.

AEP algorithm: approximates the H-measure of a d-

dimensional simplex S(0, s) (or by rescaling S(0,1))

VH [S(0, s))] = H(x1, ... , xd)

by an algebraic sum of H-measures of hypercubes Q(b, h)

(overlapping when d > 2)



1. AEP algorithm

Given b = (b1, ... , bd) ∈ Rd, h ∈ R

Q(b, h) =

xk ∈ (bk, bk + h], ∀k = 1, ..., d, ifh > 0

xk ∈ (bk + h, bk], ∀k = 1, ..., d, ifh < 0

It holds Q(b,0) = ∅.
i0, ... , iN , N = 2d − 1, 2d vectors of {0,1}d

(e.g. i0 = 0 = (0, ... ,0),iN = 1 = (1, ... ,1))

#i the numbers of 1’s in the vector i

VH[Q(b, h)] = P [Xk ∈ (bk, bk + h], ∀k = 1, ..., d] =

=
N∑
j=0

(−1)d−#ijH(b + hij)



1. AEP algorithm

The first step: replacing S(0,1) by a hypercube

Q1
1 = Q(0, α), α ∈ [1/d,1)

then from P1 := VH[Q1
1] at (n+1)-th iteration

VH[S(0,1)] = Pn +
Nn∑
k=1

σn+1
k VH[Sn+1

k ]

where σn+1
k = −1 or 1 if the simplex k have to be

respectively added or subtracted



1. AEP algorithm

With d = 2 the new simplexes generated at each step

do not overlap.

S1
1 = S(0, s) = (Q1

1 ∪ S
1
2 ∪ S

2
2) \ S3

2, ∀α ∈ [1/2,1).



1. AEP algorithm: graphical intuition with d = 2

First three steps of AEP



1. AEP algorithm: graphical intuition with d = 3

First three steps of AEP



1. AEP algorithm:

convergence in dimension 5 extendible to 8

AEP: convergence for d ≤ 5, when α = 2
d+1.

With a method based on Richardson’s extrapolation

technique, AEP convergence is extended to d ≤ 8 if the

joint distribution H has a density VH with continuous

first and second derivatives.



2. Convergence in any dimension:

Galeotti extension

Hypothesis: H has a density VH bounded in a neigh-

borhood of the simplex diagonal.

Idea: geometrical approximation of the simplex (disre-

garding probability aspects) with hypercubes.

At any step of the algorithm, a corresponding sub-

simplex of S(0,1) is exactly filled up, by summing posi-

tive and negative hypercubes, while in a suitably chosen

strip outside the simplex positive and negative hyper-

cubes exactly compensate.

The simplex is geometrically approximated, the con-

vergence follows from the assumed boundedness of the

density in a neighborhood of the simplex diagonal.



2. Convergence in any dimension:

the case d = 2 as intuition

With d = 2 and α = 1/2, the squares (2-dimensions hy-

percubes) are disjointed then the sub-simplex is exactly

filled by the hypercubes generated at n-th step.



2. Convergence in any dimension:

the case of d = 2 as intuition

By self-similarity we have an exact filling also when at

most one vertex of the hypercubes generated at n-th

step lies outside the simplex (combinatorial arguments),

for n ≥ 1 and α ∈
[

1
2,

2
3

]
.



2. Convergence in any dimension: the proof

Lemma: AEP algorithm converges for the Lebesgue

measure when d ≥ 2 and α ∈
[

1
d ,

1
d√
d!

]
.

The proof is divided in 5 ”natural” steps (full technical-

ities in Galeotti M. (2015): Computing the distribution

of the sum of dependent random variables via overlap-

ping hypercubes. Decisions in Economics and Finance

38(2), 231-255.



2. Convergence in any dimension: the proof

So a good choice is α = 2
d+1, since it is

2
d+1 <

d
√

2
d! ∀d = 1,2,3, ... (induction argument)

For maximum convergence, through some combinato-

rial details we have for α

a = d
√

1
d!

d = 2 is α =
√

1
2 = 0.70711

d = 3 is α = 3
√

1
3! = 0.55032

d = 4 is α = 4
√

1
4! = 0.4518

d = 10 is α = 10
√

1
10! = 0.22081

d→ +∞ is (Stirling formula) α = e
d



3. Application to VaR and ES

Let X = (X1, ... , Xd), the vector of r.v. which describes

d random losses with generic marginals F1, ... , Fd and

joint distribution function H.

VaR at level α is defined

V aR(α) = inf {K ∈ R|P (X1 + ...+Xd ≤ K) = 1− α}

For the random Shortfall S with threshold K, we have

S(α) ∝ (X1 + ...+Xd)|(X1 + ...+Xd) > K,K = V aR(α)

with the generic r-th moment given by

EH(Sr) =∝
∫
x1+...+xd≥K

(x1 + ...+ xd)
r dVH

where VH is the probability measure.



3. Application to VaR and ES

Let consider the subspace

VaR

{x1, ..., xd|x1 + ...+ xd ≤ K} ⊂ Rd

Expected Shortfall

{x1, ..., xd|x1 + ...+ xd > K} ⊂ Rd

divided into ”stripes” defined by the extreme values si
and si+1, s.t. si+1 > x1 + ...+ xd ≥ si.
Each value si identifies a simplex S(0, si) which can be

evaluated as stated before.



3. Application to VaR (easy)

An estimate of V aR is given by K such that

VH [S(0,K)] =
N−1∑
i=0

(
VH

[
S(0, si+1)

]
− VH [S(0, si)]

)
= 1−α

sN = K, s0 = 0

Fixed ε ∈ R arbitrarily small, VaR estimation converges

to the correct value K

for each succession si, i = 0,1,2, ... such that

∃i∗ : |si∗ −K| < ε



3. Application to ES (difficult)

Bounds for the estimation of the generic h-th moment

of the random Shortfall EH(Sr) are given by (since the

positive skewness in each interval (si,si+1))

Emin =
N−1∑
i=0

(
VH

[
S(0, si+1)

]
− VH [S(0, si)]

)
[si]

r

Emed =
N−1∑
i=0

(
VH

[
S(0, si+1)

]
− VH [S(0, si)]

) [si+1 + si

2

]r
sN = L, L >> K, s0 = K.

The two bounds converge to the correct value if

L→ +∞, si+1 − si → 0 and then N → +∞
with an obvious trade-off between estimation accuracy

and computation time.



3. Application to VaR and ES:
standard scenario
Pareto marginals
Fi(x) = 1− (1 + x)−θi, x ≥ 0, θ ≥ 0.
To have E[X] = 1

θ−1 it musts be θ ≥ 1
Clayton copula
CδCl(u1, ... , ud) = (u−δ1 + ...+ u−δd − d+ 1)−

1
δ

ui ∈ [0,1], i = 1, ... , d with δ ∈ (0,∞)
if δ → 0 then copula tends to independence,
if δ →∞ then copula tends to comonotonicity
Model parameters
δ = 5, d = 2
Contract parameter
K = 20
Algorithm parameters
si+1 = si + γ
n = 4, α = 1√

2



3. Application to VaR and ES:

numerical results

Case θ = 2 (then E[X] = 1)
γ,L 1000 2000 4000 10000

Emed 1 0.109 0.111 0.112 0.113
Emin 1 0.106 0.108 0.109 0.110
Emed 2 0.109 0.112 0.113 0.113
Emin 2 0.103 0.105 0.107 0.109

Case θ = 1.2 (then E[X] = 5)
γ,L 1000 2000 4000 10000

Emed 1 2.805 3.198 3.541 3.927
Emin 1 2.773 3.167 3.509 3.894
Emed 2 2.806 3.199 3.542 3.928
Emin 2 2.742 3.135 3.478 3.863



3. Application to VaR and ES:

numerical results

With θ = 2 V aR(99%) = 15.96

It is VH [S(0,15.96)] = 0.990001

With θ = 1.2 V aR(99%) = 90.73

It is VH [S(0,90.73)] = 0.9900005

Obs.

The algorithm is stopped at a relatively small value.



4. The convergence speed problem

Considering the case θ = 1.2, the estimation for Ex-

pected Shortfall is not stable even if L = 10000.

How high has to be L to reach “stability”?

With L = 20000, Emed = 4.176.

With L = 40000, Emed = 4.392.

And ... what about Emed = 4.821 with L = 200000???

The level of threshold L at which the algorithm will be

stopped seems to be absolutely crucial for the quality

of estimation.



4. The convergence speed problem

Fixed ε the parameter that affects the convergence

speed is n.

Obs. Given d, if n increases of 1 then the number of

hypercubes to be considered in the estimation is d times

higher.

An alternative to speed up the algorithm is to random-

ize the hypercubes considered in the estimation.

Let λ ∈ [0,1] the share of the hypercubes considered in

the estimation.

Obs. If n decreases of 1, then the same reduction of

time is obtained considering λ = 1/d.



4. The convergence speed problem:

standard scenario

Pareto marginals

Fi(x) = 1− (1 + x)−θi, x ≥ 0, θ ≥ 0.

To have E[X] = 1
θ−1 it musts be θ ≥ 1

Clayton copula

CδCl(u1, ... , ud) = (u−δ1 + ...+ u−δd − d+ 1)−
1
δ

ui ∈ [0,1], i = 1, ... , d with δ ∈ (0,∞)

if δ → 0 then copula tends to independence,

if δ →∞ then copula tends to comonotonicity

Model parameters

d = 2, (then α = 1√
2

)

θ = 1.5 (then E[X] = 2), δ = 5.



4. The convergence speed problem:
randomization

With ε = 0.000001 the “benchmark” estimates of Var(β)
for β = 0.99,0.995, obtained with n = 8 are
K(0.99) = 38.33 and K(0.995) = 59.22.
We use these estimates to calculate the probability at
the same thresholds using different values for parame-
ter n or using the randomization procedure.
Obs. The results obtained with the same lapse of time
are reported in the same column of the following tables
(e.g. the case n = 4 needs the same lapse of time of
randomization with λ = 1/16).
Obs. We remark that in our procedure the randomiza-
tion is not applied at the first step of AEP algorithm,
since the “first” hypercube affects the estimation in a
crucial way.



4. The convergence speed problem:

numerical results

n 2 3 4 5 6 7
An. .989860 .990015 .989994 .989997 .989997 .989998
Rd. .989928 .989856 .989799 .989582 .989474 .989403



4. The convergence speed problem:

numerical results

n 2 3 4 5 6 7
An. .994829 .995012 .994999 .995003 .995000 .995000
Rd. .994956 .994929 .994938 .994766 .994548 .994416



4. The convergence speed problem: comments

It is quite surprisingly that using the randomization pro-

cedure better estimates are obtained with a lower num-

ber of hypercubes!

For value of n near the “benchmark” the analytical es-

timation is fully satisfying, but for low levels of such

parameter, the randomization seems to be a good op-

portunity.



5. Open problems

In order to speed-up AEP algorithm our future research

seems to have two main features:

1) extension of AEP numerical procedures to higher di-

mensions;

2) verify the randomization procedure for higher dimen-

sions;

3) considering some semi-random procedures instead of

pure-random one considered in this work.
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