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The problem

The evaluation of the sum of dependent risks is a main
issue for many applications in finance and insurance
(Value-at-Risk, Expected Shortfall, Stop-Loss reinsur-
ance, ...). The key problem for a positive s is

P[X14 ..+ X, < 3]

where

X1,..., X4 non-negative (bounded from below) r.v.
H(x1,...,x4) distribution function

Vg probability measure



Outline

AEP algorithm

Convergence in any dimension: Galeotti extension
Application to VaR and ES

The convergence speed problem

Open problems

Main references

OOk wWwNH=



1. AEP algorithm

Arbenz P., Embrechts P., Puccetti G. (Bernoulli, 2011):
The AEP algorithm for the fast computation of the
distribution of the sum of dependent random variables.

AEP algorithm: approximates the H-measure of a d-
dimensional simplex S(0,s) (or by rescaling S(0,1))
Vi [S(0,5))] = H(z1, ..., 2q)

by an algebraic sum of H-measures of hypercubes Q(b, h)
(overlapping when d > 2)



1. AEP algorithm

Given b = (by,...,by) €R%, heR

(b h) = {azk c (b, by +hl,VE=1,....d,ifh >0
’ z;. € (b, + h,b.],Vk=1,...,d,ifh <0
It holds Q(b,0) = 0.
ig,...,ix, N =29 —1, 29 vectors of {0, 1}¢
(e.g. ip=0=1(0,...,0),iy=1=(1,...,1))
#1 the numbers of 1's in the vector 1

VrlQ(b,h)] = P[X) € (bg, b + h],VE=1,...,d] =

N
= > (=) FNH(b 4+ hij)
§=0



1. AEP algorithm

The first step: replacing S(0,1) by a hypercube

Q1 = Q(0,a),a € [1/d, 1)
then from P; := Vy[Q1] at (n+1)-th iteration

N’I”L
VylS0, )] = P4+ 3 oty [snt
k=1

where O'Z—i_l = —1 or 1 if the simplex k have to be
respectively added or subtracted



1. AEP algorithm

With d = 2 the new simplexes generated at each step
do not overlap.

Si = 5(0,5) = (Q1 U S5 US3)\ S3, Va € [1/2,1).



1. AEP algorithm: graphical intuition with d =2

First three steps of AEP
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1. AEP algorithm: graphical intuition with d =3

First three steps of AEP
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1. AEP algorithm:
convergence in dimension 5 extendible to 8

AEP: convergence for d < 5, when a = d_%l.

With a method based on Richardson’s extrapolation
technique, AEP convergence is extended to d < 8 if the
joint distribution H has a density Vy with continuous
first and second derivatives.



2. Convergence in any dimension:
Galeotti extension

Hypothesis: H has a density Vy bounded in a neigh-
borhood of the simplex diagonal.

Idea: geometrical approximation of the simplex (disre-
garding probability aspects) with hypercubes.

At any step of the algorithm, a corresponding sub-
simplex of S(0,1) is exactly filled up, by summing posi-
tive and negative hypercubes, while in a suitably chosen
strip outside the simplex positive and negative hyper-
cubes exactly compensate.

The simplex is geometrically approximated, the con-
vergence follows from the assumed boundedness of the
density in a neighborhood of the simplex diagonal.



2. Convergence in any dimension:
the case d = 2 as intuition

With d = 2 and a = 1/2, the squares (2-dimensions hy-
percubes) are disjointed then the sub-simplex is exactly
filled by the hypercubes generated at n-th step.




2. Convergence in any dimension:
the case of d = 2 as intuition

By self-similarity we have an exact filling also when at
most one vertex of the hypercubes generated at n-th
step lies outside the simplex (combinatorial arguments),

forn>1and a € [%,%}




2. Convergence in any dimension: the proof

Lemma: AEP algorithm converges for the Lebesgue
1 1

measure when d > 2 and o &€ [3’21/—@]'

The proof is divided in 5 " natural” steps (full technical-

ities in Galeotti M. (2015): Computing the distribution

of the sum of dependent random variables via overlap-

ping hypercubes. Decisions in Economics and Finance
38(2), 231-255.



2. Convergence in any dimension: the proof

So a good choice is a = d_|2_—1, since it is
d—l%l < {i/% Vd = 1,2,3,... (induction argument)

For maximum convergence, through some combinato-
rial details we have for «

d=2is a=,/34=0.70711
d=3is a= {3 = 0.55032
d=4is a= {/% =0.4518

d=10is a = /7§ = 0.22081
d — +oo is (Stirling formula) a = §



3. Application to VaR and ES

Let X = (X71,...,Xy), the vector of r.v. which describes
d random losses with generic marginals Fy,..., F; and
joint distribution function H.

VaR at level « is defined

VaR(a) =inf{K eRIP(X1+ ..+ X;<K)=1-a}
For the random Shortfall S with threshold K, we have
S(a) x (X1+ ...+ X)|I(X1+...+X,) > K, K =VaR(«a)
with the generic r-th moment given by

E(ST) = "dV.
(S") =« xl—i—...—i—deK(xl—l_ + x4)" dVy

where Vg is the probability measure.



3. Application to VaR and ES

Let consider the subspace

VaR

{1,..,xglzt1+ ..+ 24 < K} CR?

Expected Shortfall

{x1,..,zglzt1 + ..+ x4 > K} CR?

divided into "stripes’ defined by the extreme values s;
and Si+1, S.tT. Si+1 > I + ...+ T > 8.

Each value s; identifies a simplex S(0,s;) which can be
evaluated as stated before.



3. Application to VaR (easy)

An estimate of VaR is given by K such that

N-1

Vi [S(0, )] = > (Vi |S(0,541)| — Vi [5(0,5)]) = 1-a
1=0

sy=K, so=0

Fixed € € R arbitrarily small, VaR estimation converges
to the correct value K
for each succession s;, 1 = 0,1,2,... such that

37:*:|87;*—K|<€



3. Application to ES (difficult)

Bounds for the estimation of the generic h-th moment
of the random Shortfall Egx(S"™) are given by (since the
positive skewness in each interval (s;,s,41))

N-1
Emin=Y_ (V& [S(0,541)| = Vi [S(0,5)]) [s:]"
i=0
= si+1+ si|"
Emea= Y. (Vi [S(0,si41)| = Vi [S(0,5:)]) [ 5 ]
i=0

sy=L, L>>K, sop=K.

The two bounds converge to the correct value if

L — 400, s;j41 —s; — 0 and then N — +o0

with an obvious trade-off between estimation accuracy
and computation time.



3. Application to VaR and ES:
standard scenario

Pareto marginals

F(zx)=1-1Q4+2z2)% >0, 6>0.

To have E[X] = 417 it musts be 6 > 1
Clayton copula )
C& (ug, .y ug) = (i + .. +uy® —d+1)75
u; € [0,1], i=1,...,d with § € (0, 00)

if & — O then copula tends to independence,
if d — oo then copula tends to comonotonicity
Model parameters

=05, d=2

Contract parameter

K =20

Algorithm parameters

z—l—l — 54 ‘I' 'Y



3. Application to VaR and ES:

numerical results
Case 0§ =2 (then E[X]=1)

v,L | 1000 | 2000 | 4000 | 10000
E,eq| 1 |0.109[0.111]0.112] 0.113
E.., 1 |0.106|0.108|0.109 | 0.110
E,eq| 2 |0.109|0.112]0.113| 0.113
E,n| 2 |0.103|0.105|0.107 | 0.109
Case 0§ = 1.2 (then E[X] = 5)

v,L | 1000 | 2000 | 4000 | 10000
E,..q| 1 |2.805]|3.198]|3.541 | 3.927
E,n| 1 |2.773]3.167 | 3.509 | 3.894
E,eqd | 2 | 2.806 | 3.199 | 3.542 | 3.928
E.in | 2 |2.742|3.135|3.478 | 3.863




3. Application to VaR and ES:
numerical results

With 8 = 2 VaR(99%) = 15.96
It is Vi [S(0,15.96)] = 0.990001

With 6 = 1.2 VaR(99%) = 90.73
It is Vi [S(0,90.73)] = 0.9900005

Obs.
The algorithm is stopped at a relatively small value.



4. The convergence speed problem

Considering the case 6 = 1.2, the estimation for EXx-
pected Shortfall is not stable even if L = 10000.

How high has to be L to reach “stability” ?

With L = 20000, E,,.q = 4.176.

With L = 40000, E,,.q = 4.392.

And ... what about E,,.; = 4.821 with L = 200000777

The level of threshold L at which the algorithm will be
stopped seems to be absolutely crucial for the quality
of estimation.



4. The convergence speed problem

Fixed ¢ the parameter that affects the convergence
speed is n.

Obs. Given d, if n increases of 1 then the number of
hypercubes to be considered in the estimation is d times
higher.

An alternative to speed up the algorithm is to random-
ize the hypercubes considered in the estimation.

Let X € [0, 1] the share of the hypercubes considered in
the estimation.

Obs. If n decreases of 1, then the same reduction of
time is obtained considering A = 1/d.



4. The convergence speed problem:
standard scenario

Pareto marginals

F(zx)=1—-(14+2)Y% >0, 0>0.

To have E[X] = z1; it musts be § > 1
Clayton copula

O (uy, . ug) = (i’ + .+ u® —d+1)7
u; € [0,1], e =1,...,d with § € (0, 00)

if & — 0 then copula tends to independence,
if § — oo then copula tends to comonotonicity
Model parameters

d =2, (then a = \%)

0 = 1.5 (then E[X] =2), § = 5.



4. The convergence speed problem:
randomization

With e = 0.000001 the “benchmark’ estimates of Var(3)
for 3 = 0.99,0.995, obtained with n = 8 are

K(0.99) = 38.33 and K (0.995) = 59.22.

We use these estimates to calculate the probability at
the same thresholds using different values for parame-
ter n or using the randomization procedure.

Obs. The results obtained with the same lapse of time
are reported in the same column of the following tables
(e.g. the case n = 4 needs the same lapse of time of
randomization with A = 1/16).

Obs. We remark that in our procedure the randomiza-
tion is not applied at the first step of AEP algorithm,
since the “first” hypercube affects the estimation in a
crucial way.



4. The convergence speed problem:
numerical results

n 2 3 4 5 6 7
An. | .989860 | .990015 | .989994 | .989997 | .989997 | .989998
Rd. | .989928 | .989856 | .989799 | .989582 | .989474 | .089403

0,990000

0,989000

0,989800

0,989700

0,989600

0,989500

0,989400

--Rand.




4. The convergence speed problem:
numerical results

n 2 3 4 5 6 7
An. | .994829 | .995012 | .994999 | .995003 | .995000 | .995000
Rd. | .994956 | .994929 | .994938 | .994766 | .994548 | .994416

0,995100

0,995000

0,994000

0,994800

0,994700

0,994600

0,994500

0,994400

-=n
--Rand.




4. The convergence speed problem: comments

It is quite surprisingly that using the randomization pro-
cedure better estimates are obtained with a lower num-
ber of hypercubes!

For value of n near the “benchmark’” the analytical es-
timation is fully satisfying, but for low levels of such
parameter, the randomization seems to be a good op-
portunity.



5. Open problems

In order to speed-up AEP algorithm our future research
seems to have two main features:

1) extension of AEP numerical procedures to higher di-
mensions,

2) verify the randomization procedure for higher dimen-
sions;

3) considering some semi-random procedures instead of
pure-random one considered in this work.
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