

The distribution of a sum of dependent risks: a geometric-combinatorial approach

$$
\text { Marcello Galeotti }{ }^{1} \text {, Emanuele Vannucci }{ }^{2}
$$

${ }^{1}$ University of Florence, marcello.galeotti@dmd.unifi.it
${ }^{2}$ University of Pisa, emanuele.vannucci@unipi.it

The problem

The evaluation of the sum of dependent risks is a main issue for many applications in finance and insurance (Value-at-Risk, Expected Shortfall, Stop-Loss reinsurance, ...). The key problem for a positive s is

$$
P\left[X_{1}+\ldots+X_{d} \leq s\right]
$$

where
X_{1}, \ldots, X_{d} non-negative (bounded from below) r.v.
$H\left(x_{1}, \ldots, x_{d}\right)$ distribution function
V_{H} probability measure

Outline

1. AEP algorithm
2. Convergence in any dimension: Galeotti extension
3. Application to VaR and ES
4. The convergence speed problem
5. Open problems
6. Main references

1. AEP algorithm

Arbenz P., Embrechts P., Puccetti G. (Bernoulli, 2011): The AEP algorithm for the fast computation of the distribution of the sum of dependent random variables.

AEP algorithm: approximates the H -measure of a ddimensional simplex $S(0, s)$ (or by rescaling $S(0,1)$)

$$
\left.V_{H}[\mathbf{S}(0, s))\right]=H\left(x_{1}, \ldots, x_{d}\right)
$$

by an algebraic sum of H -measures of hypercubes $Q(\mathbf{b}, h)$ (overlapping when $d>2$)

1. AEP algorithm

Given $\mathbf{b}=\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{R}^{d}, h \in \mathbb{R}$

$$
Q(\mathbf{b}, h)=\left\{\begin{array}{l}
x_{k} \in\left(b_{k}, b_{k}+h\right], \forall k=1, \ldots, d, \text { if } h>0 \\
x_{k} \in\left(b_{k}+h, b_{k}\right], \forall k=1, \ldots, d, \text { if } h<0
\end{array}\right.
$$

It holds $Q(\mathbf{b}, 0)=\emptyset$.
$\mathbf{i}_{0}, \ldots, \mathbf{i}_{N}, N=2^{d}-1,2^{d}$ vectors of $\{0,1\}^{d}$
(e.g. $\mathbf{i}_{0}=0=(0, \ldots, 0), \mathbf{i}_{N}=1=(1, \ldots, 1)$)
$\# \mathbf{i}$ the numbers of 1 's in the vector \mathbf{i}

$$
\begin{aligned}
V_{H}[Q(\mathbf{b}, h)] & =P\left[X_{k} \in\left(b_{k}, b_{k}+h\right], \forall k=1, \ldots, d\right]= \\
& =\sum_{j=0}^{N}(-1)^{d-\# \mathbf{i}_{j}} H\left(\mathbf{b}+h \mathbf{i}_{j}\right)
\end{aligned}
$$

1. AEP algorithm

The first step: replacing $S(0,1)$ by a hypercube

$$
Q_{1}^{1}=Q(0, \alpha), \alpha \in[1 / d, 1)
$$

then from $P_{1}:=V_{H}\left[Q_{1}^{1}\right]$ at $(\mathrm{n}+1)$-th iteration

$$
V_{H}[S(\mathbf{0}, 1)]=P_{n}+\sum_{k=1}^{N^{n}} \sigma_{k}^{n+1} V_{H}\left[S_{k}^{n+1}\right]
$$

where $\sigma_{k}^{n+1}=-1$ or 1 if the simplex k have to be respectively added or subtracted

1. AEP algorithm

With $d=2$ the new simplexes generated at each step do not overlap.

$$
S_{1}^{1}=S(0, s)=\left(Q_{1}^{1} \cup S_{2}^{1} \cup S_{2}^{2}\right) \backslash S_{2}^{3}, \forall \alpha \in[1 / 2,1)
$$

1. AEP algorithm: graphical intuition with $d=2$

First three steps of AEP

1. AEP algorithm: graphical intuition with $d=3$

First three steps of AEP

1. AEP algorithm:
 convergence in dimension 5 extendible to 8

AEP: convergence for $d \leq 5$, when $\alpha=\frac{2}{d+1}$.
With a method based on Richardson's extrapolation technique, AEP convergence is extended to $d \leq 8$ if the joint distribution H has a density V_{H} with continuous first and second derivatives.

2. Convergence in any dimension:

Galeotti extension

Hypothesis: H has a density V_{H} bounded in a neighborhood of the simplex diagonal.
Idea: geometrical approximation of the simplex (disregarding probability aspects) with hypercubes.
At any step of the algorithm, a corresponding subsimplex of $S(0,1)$ is exactly filled up, by summing positive and negative hypercubes, while in a suitably chosen strip outside the simplex positive and negative hypercubes exactly compensate.
The simplex is geometrically approximated, the convergence follows from the assumed boundedness of the density in a neighborhood of the simplex diagonal.

2. Convergence in any dimension:

 the case $d=2$ as intuitionWith $d=2$ and $\alpha=1 / 2$, the squares (2-dimensions hypercubes) are disjointed then the sub-simplex is exactly filled by the hypercubes generated at n-th step.

2. Convergence in any dimension:
the case of $d=2$ as intuition

By self-similarity we have an exact filling also when at most one vertex of the hypercubes generated at n-th step lies outside the simplex (combinatorial arguments), for $n \geq 1$ and $\alpha \in\left[\frac{1}{2}, \frac{2}{3}\right]$.

2. Convergence in any dimension: the proof

Lemma: AEP algorithm converges for the Lebesgue measure when $d \geq 2$ and $\alpha \in\left[\frac{1}{d}, \frac{1}{d \sqrt{d!}}\right]$.

The proof is divided in 5 " natural" steps (full technicalities in Galeotti M. (2015): Computing the distribution of the sum of dependent random variables via overlapping hypercubes. Decisions in Economics and Finance 38(2), 231-255.

2. Convergence in any dimension: the proof

So a good choice is $\alpha=\frac{2}{d+1}$, since it is $\frac{2}{d+1}<\sqrt[d]{\frac{2}{d!}} \forall d=1,2,3, \ldots$ (induction argument)

For maximum convergence, through some combinatorial details we have for α
$a=\sqrt[d]{\frac{1}{d!}}$
$d=2$ is $\alpha=\sqrt{\frac{1}{2}}=0.70711$
$d=3$ is $\alpha=\sqrt[3]{\frac{1}{3!}}=0.55032$
$d=4$ is $\alpha=\sqrt[4]{\frac{1}{4!}}=0.4518$
$d=10$ is $\alpha=\sqrt[10]{\frac{1}{10!}}=0.22081$
$d \rightarrow+\infty$ is (Stirling formula) $\alpha=\frac{e}{d}$

3. Application to VaR and ES

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$, the vector of r.v. which describes d random losses with generic marginals F_{1}, \ldots, F_{d} and joint distribution function H.
VaR at level α is defined

$$
\operatorname{VaR}(\alpha)=\inf \left\{K \in \mathbb{R} \mid P\left(X_{1}+\ldots+X_{d} \leq K\right)=1-\alpha\right\}
$$

For the random Shortfall S with threshold K, we have $S(\alpha) \propto\left(X_{1}+\ldots+X_{d}\right) \mid\left(X_{1}+\ldots+X_{d}\right)>K, K=\operatorname{VaR}(\alpha)$ with the generic r-th moment given by

$$
E_{H}\left(S^{r}\right)=\propto \int_{x_{1}+\ldots+x_{d} \geq K}\left(x_{1}+\ldots+x_{d}\right)^{r} d V_{H}
$$

where V_{H} is the probability measure.

3. Application to VaR and ES

Let consider the subspace
VaR
$\left\{x_{1}, \ldots, x_{d} \mid x_{1}+\ldots+x_{d} \leq K\right\} \subset \mathbb{R}^{d}$
Expected Shortfall
$\left\{x_{1}, \ldots, x_{d} \mid x_{1}+\ldots+x_{d}>K\right\} \subset \mathbb{R}^{d}$
divided into "stripes" defined by the extreme values s_{i} and s_{i+1}, s.t. $s_{i+1}>x_{1}+\ldots+x_{d} \geq s_{i}$.
Each value s_{i} identifies a simplex $S\left(\mathbf{0}, s_{i}\right)$ which can be evaluated as stated before.

3. Application to VaR (easy)

An estimate of $V a R$ is given by K such that
$V_{H}[S(\mathbf{0}, K)]=\sum_{i=0}^{N-1}\left(V_{H}\left[S\left(\mathbf{0}, s_{i+1}\right)\right]-V_{H}\left[S\left(\mathbf{0}, s_{i}\right)\right]\right)=1-\alpha$
$s_{N}=K, s_{0}=0$

Fixed $\epsilon \in \mathbb{R}$ arbitrarily small, VaR estimation converges to the correct value K
for each succession $s_{i}, i=0,1,2, \ldots$ such that

$$
\exists i^{*}:\left|s_{i^{*}}-K\right|<\epsilon
$$

3. Application to ES (difficult)

Bounds for the estimation of the generic h-th moment of the random Shortfall $E_{H}\left(S^{r}\right)$ are given by (since the positive skewness in each interval (s_{i}, s_{i+1}))

$$
\begin{gathered}
E_{\text {min }}=\sum_{i=0}^{N-1}\left(V_{H}\left[S\left(0, s_{i+1}\right)\right]-V_{H}\left[S\left(0, s_{i}\right)\right]\right)\left[s_{i}\right]^{r} \\
E_{\text {med }}=\sum_{i=0}^{N-1}\left(V_{H}\left[S\left(0, s_{i+1}\right)\right]-V_{H}\left[S\left(0, s_{i}\right)\right]\right)\left[\frac{s_{i+1}+s_{i}}{2}\right]^{r} \\
s_{N}=L, L \gg K, s_{0}=K .
\end{gathered}
$$

The two bounds converge to the correct value if $L \rightarrow+\infty, s_{i+1}-s_{i} \rightarrow 0$ and then $N \rightarrow+\infty$ with an obvious trade-off between estimation accuracy and computation time.
3. Application to VaR and ES: standard scenario
Pareto marginals
$F_{i}(x)=1-(1+x)^{-\theta_{i}}, x \geq 0, \theta \geq 0$.
To have $E[X]=\frac{1}{\theta-1}$ it musts be $\theta \geq 1$
Clayton copula
$C_{\mathrm{Cl}}^{\delta}\left(u_{1}, \ldots, u_{d}\right)=\left(u_{1}^{-\delta}+\ldots+u_{d}^{-\delta}-d+1\right)^{-\frac{1}{\delta}}$
$u_{i} \in[0,1], i=1, \ldots, d$ with $\delta \in(0, \infty)$
if $\delta \rightarrow 0$ then copula tends to independence,
if $\delta \rightarrow \infty$ then copula tends to comonotonicity
Model parameters
$\delta=5, d=2$
Contract parameter
$K=20$
Algorithm parameters
$s_{i+1}=s_{i}+\gamma$
$n=4, \alpha=\frac{1}{\sqrt{2}}$
3. Application to VaR and ES: numerical results
Case $\theta=2$ (then $E[X]=1$)

	γ, L	1000	2000	4000	10000							
$\mathrm{E}_{\text {med }}$	1	0.109	0.111	0.112	0.113							
$\mathrm{E}_{\text {min }}$	1	0.106	0.108	0.109	0.110							
$\mathrm{E}_{\text {med }}$	2	0.109	0.112	0.113	0.113							
$\mathrm{E}_{\text {min }}$	2	0.103	0.105	0.107	0.109		$\theta=1.2$ (then $E[X]=5)$					
:---	:---:	:---:	:---:	:---:	:---:							
$\mathrm{E}_{\text {med }}$	γ, L	1000	2000	4000	10000							
$\mathrm{E}_{\text {min }}$	1	2.805	3.198	3.541	3.927							
$\mathrm{E}_{\text {med }}$	2	2.806	3.167	3.509	3.894							
$\mathrm{E}_{\text {min }}$	2	2.742	3.199	3.542	3.928							

3. Application to VaR and ES: numerical results

With $\theta=2 \operatorname{VaR}(99 \%)=15.96$
It is $V_{H}[S(0,15.96)]=0.990001$

With $\theta=1.2 \operatorname{VaR}(99 \%)=90.73$
It is $V_{H}[S(0,90.73)]=0.9900005$

Obs.
The algorithm is stopped at a relatively small value.

4. The convergence speed problem

Considering the case $\theta=1.2$, the estimation for Expected Shortfall is not stable even if $L=10000$.
How high has to be L to reach "stability"?
With $L=20000, E_{\text {med }}=4.176$.
With $L=40000, E_{\text {med }}=4.392$.
And ... what about $E_{m e d}=4.821$ with $L=200000 ? ? ?$

The level of threshold L at which the algorithm will be stopped seems to be absolutely crucial for the quality of estimation.

4. The convergence speed problem

Fixed ϵ the parameter that affects the convergence speed is n.
Obs. Given d, if n increases of 1 then the number of hypercubes to be considered in the estimation is d times higher.

An alternative to speed up the algorithm is to randomize the hypercubes considered in the estimation.
Let $\lambda \in[0,1]$ the share of the hypercubes considered in the estimation.
Obs. If n decreases of 1 , then the same reduction of time is obtained considering $\lambda=1 / d$.
4. The convergence speed problem:

standard scenario

Pareto marginals
$F_{i}(x)=1-(1+x)^{-\theta_{i}}, x \geq 0, \theta \geq 0$.
To have $E[X]=\frac{1}{\theta-1}$ it musts be $\theta \geq 1$
Clayton copula
$C_{C \mid}^{\delta}\left(u_{1}, \ldots, u_{d}\right)=\left(u_{1}^{-\delta}+\ldots+u_{d}^{-\delta}-d+1\right)^{-\frac{1}{\delta}}$
$u_{i} \in[0,1], i=1, \ldots, d$ with $\delta \in(0, \infty)$
if $\delta \rightarrow 0$ then copula tends to independence,
if $\delta \rightarrow \infty$ then copula tends to comonotonicity
Model parameters
$d=2$, (then $\alpha=\frac{1}{\sqrt{2}}$)
$\theta=1.5$ (then $E[X]=2$), $\delta=5$.

4. The convergence speed problem:

 randomizationWith $\epsilon=0.000001$ the "benchmark" estimates of $\operatorname{Var}(\beta)$ for $\beta=0.99,0.995$, obtained with $n=8$ are
$K(0.99)=38.33$ and $K(0.995)=59.22$.
We use these estimates to calculate the probability at the same thresholds using different values for parameter n or using the randomization procedure.
Obs. The results obtained with the same lapse of time are reported in the same column of the following tables (e.g. the case $n=4$ needs the same lapse of time of randomization with $\lambda=1 / 16$).
Obs. We remark that in our procedure the randomization is not applied at the first step of AEP algorithm, since the "first" hypercube affects the estimation in a crucial way.
4. The convergence speed problem:
numerical results

n	2	3	4	5	6	7
An.	.989860	.990015	.989994	.989997	.989997	.989998
Rd.	.989928	.989856	.989799	.989582	.989474	.989403

4. The convergence speed problem: numerical results

n	2	3	4	5	6	7
An.	.994829	.995012	.994999	.995003	.995000	.995000
Rd.	.994956	.994929	.994938	.994766	.994548	.994416

4. The convergence speed problem: comments

It is quite surprisingly that using the randomization procedure better estimates are obtained with a lower number of hypercubes!

For value of n near the "benchmark" the analytical estimation is fully satisfying, but for low levels of such parameter, the randomization seems to be a good opportunity.

5. Open problems

In order to speed-up AEP algorithm our future research seems to have two main features:

1) extension of AEP numerical procedures to higher dimensions;
2) verify the randomization procedure for higher dimensions;
3) considering some semi-random procedures instead of pure-random one considered in this work.

6. Main references

[1] Arbenz P., Embrechts P., Puccetti G., (2011) The AEP algorithm for the fast computation of the distribution of the sum of dependent random variables. Bernoulli 17(2), 562-591.
[2] Arbenz, P., Embrechts, P., and G. Puccetti (2012), The GAEP algorithm for the fast computation of the distribution of a function of dependent random variables. Stochastics 84(5-6), 569-597
[3] Basel Committee on Banking Supervision (2006), International Convergence of Capital Measurement and Capital Standards.
[4] Durante F., Sarkoci P., Sempi C. (2009), Shuffles of copulas. Journal of Mathematical Analysis and Applications 352(2), 914-921
[5] Galeotti M. (2015), Computing the distribution of the sum of dependent random variables via overlapping hypercubes. Decisions in Economics and Finance 38(2), 231-255.
[6] Puccetti, G. and L. Rüschendorf (2015), Computation of sharp bounds on the expected value of a supermodular function of risks with given marginals. Commun. Stat. Simulat. 44(3), 705-718.

