Pricing of Guaranteed Minimum Benefits in Variable Annuities

ICA 2014

Mikhail Krayzler
Chair of Mathematical Finance
Technische Universität München

joint work with Rudi Zagst and Bernhard Brunner
Agenda

1. Introduction and motivation
2. Valuation model
3. Pricing of GMABs
4. Model calibration
5. Example
6. Conclusion & Outlook
Introduction and motivation
Variable Annuities

- **Variable Annuities** (VA) are (deferred), fund-linked annuity and insurance products allowing guaranteed payments and participation in the financial markets at the same time.

- Examples for guaranteed payments include
 - minimum interest rate guarantees
 - ratchets

- Variable annuities are often referred to as GMxB, **Guaranteed Minimum Benefits** of type x:
 - GMDB (Death)
 - GMAB (Accumulation)
 - GMIB (Income)
 - GMWB (Withdrawal)
Markets for Variable Annuities

• Motivation
 – Increasing life expectancy
 – Reduction of the state retirement pensions in several countries

• Consequences
 – VA as a major success story in the North American insurance market
 – Rapid growth of VA business in Japan - from $1.3 billion in 2001 to more than $216 billion in 2011 (assets under management)
 – Europe as the latest market for Variable Annuities

• Risks: financial, actuarial, behavioral
Existing literature

- GMDB: financial protection to dependents of the insured in case of death [Milevsky and Posner 2001], [Ulm 2008]
- GMAB: choice between fund performance and guarantee at maturity [van Haastrecht et al. 2009]
- GMIB: market value of fund account paid at once or lifelong annuity [Boyle and Hardy 2003], [Marshall et al. 2010]
- GMWB: Possibility to withdraw money from account within certain limits [Milevsky and Salisbury 2006], [Dai et al. 2008]
- General framework for pricing GMxB’s, either geometric Brownian Motion or numerical valuation: [Bauer et al. 2008], [Bacinello et al. 2011]

Our contribution:
Explicit solutions for the prices of GMABs in a hybrid model for insurance and market risk.
Valuation model
Financial market model
Notation and definitions

- \((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})\): filtered probability space
- \(r\): short rate process adapted to filtration \(\mathbb{F}\) and money-market account

\[
B(t) = \exp \left(\int_0^t r(s) ds \right).
\]

- \(\mathbb{Q}\): risk-neutral measure
- \(S\): traded security with \(S/B\) a \(\mathbb{Q}\)-martingale:

\[
S(t) = \mathbb{E}_\mathbb{Q} \left[e^{-\int_t^T r(s) ds} S(T) | \mathcal{F}_t \right].
\]

- Hull-White-Black-Scholes hybrid model with time-dependent volatility (HWBS). Dynamics under \(\mathbb{Q}\):

\[
dr(t) = (\theta_r(t) - a_r(t)) dt + \sigma_r dW_r^\mathbb{Q}(t),
\]

\[
 dY(t) = \left(r(t) - \frac{1}{2} \sigma_Y^2(t) \right) dt + \sigma_Y(t) dW_Y^\mathbb{Q}(t),
\]

where \(Y(t) = \ln \left(S(t)/S(0) \right)\) and \(dW_r^\mathbb{Q}(t)dW_Y^\mathbb{Q}(t) = \rho dt\).
Insurance model
Notation and definitions

• **Random lifetime** of a person aged \(x \) at \(t = 0 \): Stopping time \(\tau_x \) of counting process \(N_{x+t}(t) \) with mortality intensity \(\lambda_{x+t}(t) \) adapted to filtration \(\mathbb{F} \).

• Mortality intensity independent from short rate and equity price.

• Introduce filtrations \(\mathbb{H} = (\mathcal{H}_t)_{t \geq 0} \) with \(\mathcal{H}_t = \sigma(\mathbbm{1}_{\{\tau_x \leq s\}} : s \leq t) \) and \(\mathcal{G} = \mathbb{F} \vee \mathbb{H} \).

• **Survival probability:**
 Probability that a person of age \(x + t \) at time \(t \) survives at least up to time \(T \):
 \[
p_{x+t}(t, T) := \mathbb{Q}(\tau_x > T | \mathcal{G}_t).
 \]

• For a person of age of \(x + t \) at time \(t \) it holds:
 \[
p_{x+t}(t, T) = \mathbb{E}_\mathbb{Q}\left[e^{-\int_t^T \lambda_{x+s}(s) \, ds} | \mathcal{G}_t \right] = \mathbb{E}_\mathbb{Q}\left[e^{-\int_t^T \lambda_{x+s}(s) \, ds} | \mathcal{F}_t \right].
 \]
Insurance model
Mortality improvement ratio

- Compare mortality intensity at time 0 with mortality intensity at time t
- Mortality improvement ratio:

$$\xi_{x+t}(t) = \frac{\lambda_{x+t}(t)}{\lambda_{x+t}(0)}$$

Sample path for the mortality improvement ratio
Insurance model
Mortality improvement ratio

- ξ_t modeled as an extended Vasicek process adapted to filtration \mathcal{F}:
 \[d\xi(t) = k(e^{-\gamma t} - \xi(t))dt + \sigma e_{\xi}dW^\xi(t). \]
- Initial mortality intensity described by Gompertz model:
 \[\lambda_{x+t}(0) = \frac{1}{b} \cdot c \cdot \frac{x+t-m}{b}, \]
calibrated to the current life table.
- Future mortality intensity can be calculated by
 \[\lambda_{x+t}(t) = \lambda_{x+t}(0) \cdot \xi(t). \]
- Survival probability can be expressed as:
 \[p_{x+t}(t, T) = C_\lambda(t, T)e^{-D_\lambda(t,T)\lambda_{x+t}(t)}, \]
 where $C_\lambda(t, T)$ and $D_\lambda(t, T)$ satisfy two ordinary differential equations which can be solved analytically.
Pricing of variable annuities
Guaranteed Minimum Accumulation Benefit

Definition

- IP: single premium
- \(A(t) \): account value at time \(t \), \(A(0) = IP \), 100% invested in equities.
- \(G(T) \): guaranteed amount at end of the accumulation period \(T \)
- GMAB provides policyholder, who is alive at \(T \), with a benefit \(V(T) \):
 \[
 V(T) = 1_{\{\tau > T\}} \cdot \max(A(T), G(T))
 \]
- Common options for \(G(T) \):
 - Return of premium: \(G(T) = IP \)
 - Roll-up \(G(T) = IP \cdot e^{\delta T} \), with continously compounded roll-up rate \(\delta \)
 - Ratchet \(G(T) = \max_{t_i < T} A(t_i) \)
- Fair value of GMAB at \(t = 0 \):
 \[
 V(0) = \mathbb{E}_Q \left[e^{-\int_0^T r(s) ds} 1_{\{\tau > T\}} \max(A(T), G(T)) \right]
 \]
Guaranteed Minimum Accumulation Benefit
Roll-up guarantee

Theorem 1.
Explicit expression for $V(0)$ with $G(T) = IP \cdot e^{\delta T}$:

$$V(0) = IP \cdot p_x(0, T) \cdot \Phi \left(\frac{\mu^S_Y(T) - \delta T}{\sigma^S_Y(T)} \right)$$

$$+ \ IP \cdot P^m(0, T) \cdot e^{\delta T} \cdot \Phi \left(\frac{\delta T - \mu^T_Y(T)}{\sigma^T_Y(T)} \right),$$

with

- Φ: distribution function of a standard normal distribution
- **Mortality-adjusted zero-coupon bond:**
 $$P^m(0, T) = P(0, T) \cdot p_x(0, T).$$
- $\mu^S_Y(T), \sigma^S_Y(T)$ are the moments under the equity measure Q^S
- $\mu^T_Y(T), \sigma^T_Y(T)$ are the moments under the forward measure Q^T
Theorem 2.

Explicit expression for $V(0)$ with $G(T) = \max_{t_i < T} A(t_i)$:

$$V(0) = \mathbf{1} \mathbf{P} \cdot p_x(0, T) \cdot \left(\Phi_{n-1}(0; -\mu_{\Delta_k Y}^S, \Sigma_{\Delta_k Y}^S) \right. $$

$$+ \sum_{k=1}^{n-1} \left(\Phi_{n-1}(0; -\mu_{\Delta_k Y}^S - \Sigma_{\Delta_k Y}^S e_{n-1}, \Sigma_{\Delta_k Y}^S) \right) \cdot e^{\mu_{\Delta_{n,k} Y}^S + \frac{(\sigma_{\Delta_{n,k} Y}^S)^2}{2}},$$

with

• e_k: unit vector with k-th element equal to 1

• $\mu_{\Delta_k Y}^S, \Sigma_{\Delta_k Y}^S$ are the mean vector and covariance matrix under Q^S of

$$\Delta_k Y := \{\Delta_{i,k} Y\}_{i \in \{1,\ldots,n\} \setminus \{k\}}$$

with

$$\Delta_{i,k} Y := \{Y(t_k) - Y(t_i)\}_{i \in \{1,\ldots,n\} \setminus \{k\}}, \quad t_n := T$$

• $\Phi_{n-1}(u, \mu, \Sigma)$: multivariate normal distribution function with mean vector μ and covariance matrix Σ.

Guaranteed Minimum Accumulation Benefit
Ratchet guarantee
Guaranteed Minimum Accumulation Benefit
Ratchet guarantee

Proof.

- Separate insurance and financial parts and rewrite expectation:

\[
\begin{align*}
V(0) &= \mathbb{E}_Q \left[e^{-\int_0^T r(s) \, ds} \cdot 1_{\tau > T} \cdot \max_{t_i} \left(A(T), \max_{t_i} A(t_i) \right) \right] \\
&= \mathbb{E}_Q \left[1_{\tau > T} \right] \cdot \mathbb{E}_Q \left[e^{-\int_0^T r(s) \, ds} \cdot \max_{t_i} \left(A(T), \max_{t_i} A(t_i) \right) \right] \\
&= p_x(0, T') \cdot \sum_{k=1}^{n} \mathbb{E}_Q \left[e^{-\int_0^T r(s) \, ds} \cdot A(t_k) \cdot 1_{A(t_k) \geq A(t_i), i \in \{1, \ldots, n\} \setminus \{k\}} \right] \\
&= p_x(0, T') \cdot \left(\sum_{k=1}^{n} I_{t_k} \right) \\
\end{align*}
\]

with

\[
I_{t_k} := \mathbb{E}_Q \left[e^{-\int_0^T r(s) \, ds} \cdot A(t_k) \cdot 1_{A(t_k) \geq A(t_i), i \in \{1, \ldots, n\} \setminus \{k\}} \right] .
\]
Guaranteed Minimum Accumulation Benefit
Ratchet guarantee

Proof (continued).

- Change to equity measure:

\[I_{tk} = \mathbb{E}_Q \left[e^{-\int_0^T r(s)ds} \cdot A(t_n) \cdot \frac{A(t_k)}{A(t_n)} \cdot \mathbb{1}_{A(T) \geq A(t_i), i \in \{1,\ldots,n\}\{k\}} \right] \]

\[= A(0) \cdot \mathbb{E}_Q \left[\frac{A(t_k)}{A(t_n)} \cdot \mathbb{1}_{\frac{A(t_i)}{A(t_k)} \leq 1, i \in \{1,\ldots,n\}\{k\}} \right] \]

\[= A(0) \cdot \mathbb{E}_Q \left[e^{Y(t_k) - Y(t_n)} \cdot \mathbb{1}_{Y(t_i) - Y(t_k) \leq 0, i \in \{1,\ldots,n\}\{k\}} \right] \]

\[= A(0) \cdot \mathbb{E}_Q \left[e^{\Delta_{nk}Y} \cdot \mathbb{1}_{\Delta_{ki}Y \leq 0, i \in \{1,\ldots,n\}\{k\}} \right] \]

with

\[\Delta_{ij}Y = Y(t_j) - Y(t_i), \quad t_n := T. \]

- Integration over multivariate normal density function gives final formula.
Model calibration
Insurance model calibration

Data

- Initial mortality table (Source: Federal Statistical Office of Germany)

![Mortality rates graph]

- Mortality improvement ratio (Source: Federal Statistical Office of Germany)

![Mortality improvement ratio graph]
Insurance model calibration
Algorithm and results

- Gompertz model: via least-squares method.
- Mortality improvement ratio: via maximum likelihood method.
- Log-likelihood function:
 \[
 \mathcal{L}(k, \gamma, \sigma_\xi) = \sum_{i=1}^{n} \ln(f(\xi_i|\xi_{i-1}; k, \gamma, \sigma_\xi))
 = \frac{n}{2} \ln(2\pi) - n \ln \hat{\sigma}_\xi
 - \frac{1}{2\hat{\sigma}_\xi^2} \sum_{i=1}^{n} \left(\xi_i - \xi_{i-1}e^{-k\cdot\Delta} - \frac{k}{k - \gamma}e^{-\gamma t_i} \cdot \left(1 - e^{-(\gamma-k)\cdot\Delta}\right) \right)^2,
 \]

 where
 \[
 \hat{\sigma}_\xi = \sigma_\xi \sqrt{\frac{1 - e^{-2k\cdot\Delta}}{2k}}
 \]
- Result:

<table>
<thead>
<tr>
<th>Mortality</th>
<th>b</th>
<th>m</th>
<th>k</th>
<th>\gamma</th>
<th>\sigma_\xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>7.80</td>
<td>88.09</td>
<td>0.5529</td>
<td>0.0223</td>
<td>0.0512</td>
</tr>
<tr>
<td>male</td>
<td>9.57</td>
<td>83.89</td>
<td>0.4301</td>
<td>0.0179</td>
<td>0.0485</td>
</tr>
</tbody>
</table>
Financial model calibration

Data

- Interest rate data: deposit rates, swaps, swaptions (Source: Bloomberg)

- Equity data: implied volatilities term structure (Source: Bloomberg)
Financial model calibration
Algorithm

- \(\theta_r(t) \): shift to current term structure of interest rates

- Hull-White model: minimize sum of squared deviations from observed European swaption prices

- Result: \(a_r = 0.0151 \) and \(\sigma_r = 0.009 \).

- Instantaneous volatility: (piecewise) constant, extracted by recursion.

- Correlation: historical correlation between EuroStoxx50 log-returns and absolute differences in 3-month zero rates.

- Result: \(\sigma_S = 0.2923 \) and \(\rho = 0.1209 \).
Example 5
Setup

- Type of the guarantee: single premium GMAB, $T = 20$ years.
- Maturity of the guarantee: 20 years.
- Policyholder: male, 45 years old.
- Mortality improvement ratio: German population for period 1968-2008.
- Roll-up and ratchet considered:

Ratchet step = 4 years

Roll-up rate = 2%
Sensitivities to product parameters

Roll-up rate

- Roll-up guarantee

<table>
<thead>
<tr>
<th>Roll-up</th>
<th>Roll-up rate</th>
<th>GMAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>102.49</td>
</tr>
<tr>
<td>2</td>
<td>1.5%</td>
<td>111.51</td>
</tr>
<tr>
<td>3</td>
<td>3.0%</td>
<td>125.64</td>
</tr>
</tbody>
</table>

- Ratchet guarantee

<table>
<thead>
<tr>
<th>Ratchet</th>
<th>Ratchet step</th>
<th>GMAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 years</td>
<td>125.28</td>
</tr>
<tr>
<td>2</td>
<td>4 years</td>
<td>118.49</td>
</tr>
<tr>
<td>3</td>
<td>8 years</td>
<td>114.19</td>
</tr>
</tbody>
</table>
Sensitivities to financial market parameters
Equity volatility

- Sensitivities: Central difference quotient for a parallel shift of ±0.01%.
- Stress test according to QIS5 calibration paper for Solvency II\(^a\):
 Relative increase (up stress) of 50% and decrease (down stress) of 15% from current value.
- Roll-up guarantee

<table>
<thead>
<tr>
<th>ImpVol</th>
<th>Roll-Up 1</th>
<th>Roll-Up 2</th>
<th>Roll-Up 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.75%</td>
<td>0.98%</td>
<td>1.19%</td>
</tr>
<tr>
<td>Current value</td>
<td>102.49</td>
<td>111.51</td>
<td>125.64</td>
</tr>
<tr>
<td>Up stress</td>
<td>111.66</td>
<td>122.99</td>
<td>139.43</td>
</tr>
<tr>
<td>Down stress</td>
<td>99.69</td>
<td>107.83</td>
<td>121.13</td>
</tr>
</tbody>
</table>

- Ratchet guarantee

<table>
<thead>
<tr>
<th>ImpVol</th>
<th>Ratchet 1</th>
<th>Ratchet 2</th>
<th>Ratchet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>2.24%</td>
<td>1.81%</td>
<td>1.24%</td>
</tr>
<tr>
<td>Current value</td>
<td>125.28</td>
<td>118.49</td>
<td>114.19</td>
</tr>
<tr>
<td>Up stress</td>
<td>155.89</td>
<td>142.53</td>
<td>133.53</td>
</tr>
<tr>
<td>Down stress</td>
<td>117.14</td>
<td>111.93</td>
<td>108.74</td>
</tr>
</tbody>
</table>

\(^a\) Committee of the European Insurance and Occupational Pension Supervisors, CEIOPS-SEC-40-10.
Sensitivities to financial market parameters

Interest rates

- Sensitivities: Central difference quotient for a parallel shift of \(\pm 0.01\% \).
- Stress test scenarios according to QIS5 calibration paper for Solvency II\(^a\):
- Roll-up guarantee

<table>
<thead>
<tr>
<th>IR</th>
<th>Roll-up 1</th>
<th>Roll-up 2</th>
<th>Roll-up 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>-4.19%</td>
<td>-6.73%</td>
<td>-10.44%</td>
</tr>
<tr>
<td>Current value</td>
<td>102.49</td>
<td>111.51</td>
<td>125.64</td>
</tr>
<tr>
<td>Up stress</td>
<td>98.90</td>
<td>105.73</td>
<td>116.63</td>
</tr>
<tr>
<td>Down stress</td>
<td>107.96</td>
<td>120.13</td>
<td>138.80</td>
</tr>
</tbody>
</table>

- Ratchet guarantee

<table>
<thead>
<tr>
<th>IR</th>
<th>Ratchet 1</th>
<th>Ratchet 2</th>
<th>Ratchet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>-6.76%</td>
<td>-6.16%</td>
<td>-4.74%</td>
</tr>
<tr>
<td>Current value</td>
<td>125.28</td>
<td>118.49</td>
<td>114.19</td>
</tr>
<tr>
<td>Up stress</td>
<td>120.95</td>
<td>114.35</td>
<td>110.49</td>
</tr>
<tr>
<td>Down stress</td>
<td>133.92</td>
<td>126.33</td>
<td>121.12</td>
</tr>
</tbody>
</table>

\(^a\) The altered term structures are derived by multiplying the current interest rate curve by \(1 + s_{\text{up}} \) and \(1 + s_{\text{down}} \), where \(s_{\text{up}} \) (\(s_{\text{down}} \)) ranges from 0.70 (\(-0.75 \)) for short-term maturities to 0.25 (\(-0.30 \)) for long-term maturities.
Sensitivities to insurance market parameters

Mortality

- Sensitivities: one-directional difference quotient for a relative decrease of 1%.

- Stress test according to Solvency II requirements: 25% reduction applied to entire mortality table.

- Roll-up guarantee

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Roll-up 1</th>
<th>Roll-up 2</th>
<th>Roll-up 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.11%</td>
<td>0.12%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Initial</td>
<td>102.49</td>
<td>111.51</td>
<td>125.64</td>
</tr>
<tr>
<td>Reduced</td>
<td>105.32</td>
<td>114.56</td>
<td>129.10</td>
</tr>
</tbody>
</table>

- Ratchet guarantee

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Ratchet 1</th>
<th>Ratchet 2</th>
<th>Ratchet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.14%</td>
<td>0.13%</td>
<td>0.08%</td>
</tr>
<tr>
<td>Initial</td>
<td>125.28</td>
<td>118.49</td>
<td>114.19</td>
</tr>
<tr>
<td>Reduced</td>
<td>128.72</td>
<td>121.76</td>
<td>117.33</td>
</tr>
</tbody>
</table>
Conclusion & Outlook
Conclusion & further research

- HWBS for the financial market.
- 2-step approach for stochastic mortality modelling.
- Explicit expressions for GMABs with different guarantee riders.
- Calibration of the presented hybrid model.
- Example with sensitivity analysis.

- Analyse other types of guarantees (GMIB, GMDB).
- Incorporate policyholder behavior risk.
 (with Escobar, M., Ramsauer, F., Saunders, D., Zagst, R.)
Thank you for your attention.
Bibliography

Appendix
Zero-coupon bond

- Zero-coupon bond:

\[P(t, T) = \mathbb{E}_Q \left[e^{-\int_t^T r(u) du} | \mathcal{F}_t \right] = C_r(t, T) \cdot e^{-D_r(t, T)r(t)} \]

with

\[C_r(t, T) = \frac{P^M(0, T)}{P^M(0, t)} \cdot \exp \left[D_r(t, T) f^M(0, t) - \frac{\sigma_r^2}{4a} (1 - e^{-2a_r t}) D_r(t, T)^2 \right] \]

\[D_r(t, T) = \frac{1}{a_r} \left[1 - e^{a_r(t-T)} \right] \]

- Long-term zero-coupon rate \(R(t, T) \) is a linear function of short rate \(r(t) \):

\[R(t, T) = -a + br(t), \]

with

\[a := \log(C_r(t, T))/(T - t) \text{ and } b := D_r(t, T)/(T - t). \]
Appendix

Zero-coupon bond as a numeraire

- \(Q^T \): **T-forward measure** with zero-coupon bond \(P(\cdot, T) \) as numeraire.

- Corresponding Radon-Nikodym derivative:
 \[
 \frac{dQ^T}{dQ} = \frac{P(T, T)/P(t, T)}{B(T)/B(t)} = \exp \left[-\frac{1}{2} \int_0^T \gamma^2(t) dt - \int_0^T \gamma(t) dW^Q_r \right],
 \]
 with
 \[\gamma(t) = \sigma_r \cdot D_r(t, T). \]

- Dynamics under \(Q^T \):
 \[
 dr(t) = (\theta_r(t) - a_r r(t) - \sigma_r^2 D_r(t, T)) dt + \sigma_r dW^Q_r(t),
 \]
 \[
 dY(t) = \left(r(t) - \frac{1}{2} \sigma_Y^2(t) - \sigma_Y(t) \sigma_r \rho D_r(t, T) \right) dt + \sigma_Y(t) dW^Q_Y(t).
 \]

- \(r(T) \) and \(Y(T) \) are normally distributed with corresponding moments
 \[\mu_{r(T)}^{Q^T}, \sigma_{r(T)}^{Q^T} \] and \[\mu_{Y(T)}^{Q^T}, \sigma_{Y(T)}^{Q^T} \].
Appendix
Equity price as a numeraire

- **\mathcal{Q}^S: equity measure** with equity price S as numeraire.
- Corresponding Radon-Nikodym derivative:
 \[
 \frac{d\mathcal{Q}^S}{d\mathcal{Q}} = \frac{S(T)/S(t)}{B(T)/B(t)} = \exp \left[-\frac{1}{2} \int_0^T \sigma_Y^2(t) dt + \int_0^T \sigma_Y(t) dW_Y(t) \right],
 \]
- Dynamics under \mathcal{Q}^S:
 \[
 dr(t) = \left(\theta_r(t) - a_r r(t) + \sigma_r \sigma_Y(t) \rho \right) dt + \sigma_r dW_r^{\mathcal{Q}^S}(t),
 \]
 \[
 dY(t) = \left(r(t) + \frac{1}{2} \sigma_Y^2(t) \right) dt + \sigma_Y(t) dW_Y^{\mathcal{Q}^S}(t).
 \]
- $r(T)$ and $Y(T)$ are normally distributed with corresponding moments
 \[
 \mu_{r(T)}^{\mathcal{Q}^S}, \sigma_{r(T)}^{\mathcal{Q}^S} \quad \text{and} \quad \mu_{Y(T)}^{\mathcal{Q}^S}, \sigma_{Y(T)}^{\mathcal{Q}^S}.
 \]